Chaplygin’s ball with a rotor: Non-degeneracy of singular points
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of a dynamically balanced asymmetric ball with a rotor rolling over a rough horizontal plane is considered in the paper. Earlier, A. Y. Moskvin constructed bifurcation diagrams of the momentum map and bifurcation complexes in order to study the dynamics of the system and to obtain singular solutions. A natural development of this research is a fine Liouville analysis of the system. The first step in this direction is presented in the paper, namely, we verify the non-degeneracy of singularities and describe the Liouville foliation in a neighborhood of singular points of the momentum map.
@article{VMUMM_2016_2_a0,
     author = {A. I. Zhila},
     title = {Chaplygin{\textquoteright}s ball with a rotor: {Non-degeneracy} of singular points},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/}
}
TY  - JOUR
AU  - A. I. Zhila
TI  - Chaplygin’s ball with a rotor: Non-degeneracy of singular points
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 3
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/
LA  - ru
ID  - VMUMM_2016_2_a0
ER  - 
%0 Journal Article
%A A. I. Zhila
%T Chaplygin’s ball with a rotor: Non-degeneracy of singular points
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 3-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/
%G ru
%F VMUMM_2016_2_a0
A. I. Zhila. Chaplygin’s ball with a rotor: Non-degeneracy of singular points. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/