Chaplygin’s ball with a rotor: Non-degeneracy of singular points
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of a dynamically balanced asymmetric ball with a rotor rolling over a rough horizontal plane is considered in the paper. Earlier, A. Y. Moskvin constructed bifurcation diagrams of the momentum map and bifurcation complexes in order to study the dynamics of the system and to obtain singular solutions. A natural development of this research is a fine Liouville analysis of the system. The first step in this direction is presented in the paper, namely, we verify the non-degeneracy of singularities and describe the Liouville foliation in a neighborhood of singular points of the momentum map.
@article{VMUMM_2016_2_a0,
     author = {A. I. Zhila},
     title = {Chaplygin{\textquoteright}s ball with a rotor: {Non-degeneracy} of singular points},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/}
}
TY  - JOUR
AU  - A. I. Zhila
TI  - Chaplygin’s ball with a rotor: Non-degeneracy of singular points
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 3
EP  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/
LA  - ru
ID  - VMUMM_2016_2_a0
ER  - 
%0 Journal Article
%A A. I. Zhila
%T Chaplygin’s ball with a rotor: Non-degeneracy of singular points
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 3-12
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/
%G ru
%F VMUMM_2016_2_a0
A. I. Zhila. Chaplygin’s ball with a rotor: Non-degeneracy of singular points. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2016), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2016_2_a0/

[1] Moskvin A.Yu., “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356

[2] Fomenko A.T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[3] Fomenko A.T., Tsishang Kh., “O topologii trekhmernykh mnogoobrazii, voznikayuschikh v gamiltonovoi mekhanike”, Dokl. AN SSSR, 294:2 (1987), 283–287 | MR | Zbl

[4] Matveev S.V., Fomenko A.T., “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Rus. Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[5] Fomenko A.T., Tsishang Kh., “O tipichnykh topologicheskikh svoistvakh integriruemykh gamiltonovykh sistem”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 378–407 | Zbl

[6] Fomenko A.T., Nikolaenko S.S., “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. and Phys., 87 (2015), 115–133 | DOI | MR | Zbl

[7] Fomenko A.T., Konyaev A.Yu., “Algebra and geometry through Hamiltonian systems”, Continuous and Distributed Systems. Theory and Applications, Solid Mechanics and Its Application, 211, eds. V.Z. Zgurovsky, V.A. Sadovnichii, Springer, 2014, 3–21 | DOI | MR | Zbl

[8] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[9] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN. Ser. matem., 446:6 (2012), 615–617 | Zbl

[10] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[11] Chaplygin S.A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168

[12] Borisov A.V., Mamaev I.S., “Gamiltonovost zadachi Chaplygina o kachenii shara”, Matem. zametki, 70:5 (1987), 793–795 | DOI

[13] Bolsinov A.V. Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999 | MR

[14] Borisov A.V., Mamaev I.S., Dinamika tverdogo tela, RKhD, Izhevsk, 2005 | MR

[15] Kharlamov M.P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[16] Kilin A.A., “The dynamics of Chaplygin ball: the qualitative and computeral analysis”, Regular and Chaotic Dynamics, 6:3 (2001), 291–306 | DOI | MR | Zbl

[17] Kozlov I.K., “Topologiya sloeniya Liuvillya dlya integriruemogo sluchaya Kovalevskoi na algebre Li so(4)”, Matem. sb., 205:4 (2014), 79–120 | DOI | Zbl