Convergence of Noor-type iteration scheme with errors in a convex cone metric space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 56-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A convergence criterion of the Noor-type iteration scheme with errors is proved for the approximation of common fixed points of three sequences of uniformly quasi-Lipschitzian self-mappings of a closed convex subset in a complete convex cone metric space.
@article{VMUMM_2016_1_a9,
     author = {T. N. Fomenko and K. S. Yastrebov},
     title = {Convergence of {Noor-type} iteration scheme with errors in a convex cone metric space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--60},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/}
}
TY  - JOUR
AU  - T. N. Fomenko
AU  - K. S. Yastrebov
TI  - Convergence of Noor-type iteration scheme with errors in a convex cone metric space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 56
EP  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/
LA  - ru
ID  - VMUMM_2016_1_a9
ER  - 
%0 Journal Article
%A T. N. Fomenko
%A K. S. Yastrebov
%T Convergence of Noor-type iteration scheme with errors in a convex cone metric space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 56-60
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/
%G ru
%F VMUMM_2016_1_a9
T. N. Fomenko; K. S. Yastrebov. Convergence of Noor-type iteration scheme with errors in a convex cone metric space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 56-60. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/

[1] Elmas S., Ozdemir M., “Convergence of a general iterative scheme for three ifinite families of uniformly quasi-Lipshitzian mappings in convex metric spaces”, Adv. Fixed Point Theory, 3:2 (2013), 406–417

[2] Lee B.-S., “Approximating common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex cone metric spaces”, Universal J. Appl. Math., 1:3 (2013), 166–171

[3] Vulikh B.Z., Vvedenie v teoriyu konusov v normirovannykh prostranstvakh, uchebnoe posobie, KGU, Kalinin, 1977 | MR

[4] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962 | MR

[5] Rezapour Sh., Hamlbarani R., “Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings””, J. Math. Anal. and Appl., 345 (2008), 719–724 | DOI | MR | Zbl

[6] Kadelburg Z., Radenovic S., “A note on various types of cones and fixed point results in cone metric spaces”, Asian J. Math. and Appl., 7 (2013)

[7] Huang L.-G., Zhang X., “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 332 (2007), 1468–1476 | DOI | MR | Zbl

[8] Takahashi W., “A convexity in metric space and nonexpansive mappings”, Kodai. Math. Semin. Rept., 22 (1970), 142–149 | DOI | MR | Zbl

[9] Liu Q.I., Liu Z.B., Huang J., “Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces”, Appl. Math. Comp., 216 (2010), 883–889 | DOI | MR | Zbl

[10] Karapinar E., “Fixed point theorems in cone Banach spaces”, Fixed Point Theory Appl., 9 (2009) | MR