Convergence of Noor-type iteration scheme with errors in a convex cone metric space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 56-60

Voir la notice de l'article provenant de la source Math-Net.Ru

A convergence criterion of the Noor-type iteration scheme with errors is proved for the approximation of common fixed points of three sequences of uniformly quasi-Lipschitzian self-mappings of a closed convex subset in a complete convex cone metric space.
@article{VMUMM_2016_1_a9,
     author = {T. N. Fomenko and K. S. Yastrebov},
     title = {Convergence of {Noor-type} iteration scheme with errors in a convex cone metric space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--60},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/}
}
TY  - JOUR
AU  - T. N. Fomenko
AU  - K. S. Yastrebov
TI  - Convergence of Noor-type iteration scheme with errors in a convex cone metric space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 56
EP  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/
LA  - ru
ID  - VMUMM_2016_1_a9
ER  - 
%0 Journal Article
%A T. N. Fomenko
%A K. S. Yastrebov
%T Convergence of Noor-type iteration scheme with errors in a convex cone metric space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 56-60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/
%G ru
%F VMUMM_2016_1_a9
T. N. Fomenko; K. S. Yastrebov. Convergence of Noor-type iteration scheme with errors in a convex cone metric space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 56-60. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/