Convergence of Noor-type iteration scheme with errors in a convex cone metric space
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 56-60
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A convergence criterion of the Noor-type iteration scheme with errors is proved for the approximation of common fixed points of three sequences of uniformly quasi-Lipschitzian self-mappings of a closed convex subset in a complete convex cone metric space.
			
            
            
            
          
        
      @article{VMUMM_2016_1_a9,
     author = {T. N. Fomenko and K. S. Yastrebov},
     title = {Convergence of {Noor-type} iteration scheme with errors in a convex cone metric space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--60},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/}
}
                      
                      
                    TY - JOUR AU - T. N. Fomenko AU - K. S. Yastrebov TI - Convergence of Noor-type iteration scheme with errors in a convex cone metric space JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2016 SP - 56 EP - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/ LA - ru ID - VMUMM_2016_1_a9 ER -
%0 Journal Article %A T. N. Fomenko %A K. S. Yastrebov %T Convergence of Noor-type iteration scheme with errors in a convex cone metric space %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2016 %P 56-60 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/ %G ru %F VMUMM_2016_1_a9
T. N. Fomenko; K. S. Yastrebov. Convergence of Noor-type iteration scheme with errors in a convex cone metric space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 56-60. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a9/
