Square-free words with one possible mismatch
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 48-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper is focused on some problems related to existence of periodic structures in words from formal languages. Squares, i.e. fragments of the form $xx$, where $x$ is some word, and squares with one error, i.e. fragments of the form $xy$, where the word $x$ is different from the word $y$ by only one letter, are considered. We study the existence of arbitrarily long words not containing squares with the length exceeding $l_0$ and squares with one error and the length more than $l_1$ depending on the natural numbers $l_0$, $l_1$. For all possible pairs $l_1\geq l_0$ we find the minimal alphabeth such that there exists an arbitrarily long word with these properties over this alphabeth.
			
            
            
            
          
        
      @article{VMUMM_2016_1_a7,
     author = {N. V. Kotlyarov},
     title = {Square-free words with one possible mismatch},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {48--52},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a7/}
}
                      
                      
                    N. V. Kotlyarov. Square-free words with one possible mismatch. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 48-52. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a7/
