The Bertrand’s manifolds with equators
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential are studied in the paper. A complete classification of such Riemannian manifolds and potentials on them possessing the strengthened Bertrand property, i.e., any orbit not contained in any meridian is closed, is obtained.
			
            
            
            
          
        
      @article{VMUMM_2016_1_a5,
     author = {E. A. Kudryavtseva and D. A. Fedoseev},
     title = {The {Bertrand{\textquoteright}s} manifolds with equators},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--44},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/}
}
                      
                      
                    E. A. Kudryavtseva; D. A. Fedoseev. The Bertrand’s manifolds with equators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/
