The Bertrand’s manifolds with equators
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential are studied in the paper. A complete classification of such Riemannian manifolds and potentials on them possessing the strengthened Bertrand property, i.e., any orbit not contained in any meridian is closed, is obtained.
@article{VMUMM_2016_1_a5,
     author = {E. A. Kudryavtseva and D. A. Fedoseev},
     title = {The {Bertrand{\textquoteright}s} manifolds with equators},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--44},
     year = {2016},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - D. A. Fedoseev
TI  - The Bertrand’s manifolds with equators
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 40
EP  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/
LA  - ru
ID  - VMUMM_2016_1_a5
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A D. A. Fedoseev
%T The Bertrand’s manifolds with equators
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 40-44
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/
%G ru
%F VMUMM_2016_1_a5
E. A. Kudryavtseva; D. A. Fedoseev. The Bertrand’s manifolds with equators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/

[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl

[2] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR

[3] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR | Zbl

[4] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C.r. Acad. sci. Paris, 77 (1873), 849–853 | Zbl

[5] Perlick V., “Bertrand spacetimes”, Class. Quantum Grav., 9 (1992), 1009–1021 | DOI | MR | Zbl

[6] Zagryadskii O.A., Fedoseev D.A., “O globalnoi i lokalnoi realizuemosti rimanovykh mnogoobrazii Bertrana v vide poverkhnostei vrascheniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 3, 18–24 | MR | Zbl

[7] Zagryadskii O.A., Fedoseev D.A., “O yavnom vide metrik Bertrana”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 5, 46–50 | MR | Zbl

[8] Nguen T.Z., Fomenko A.T., “Topologicheskaya klassifikatsiya integriruemykh nevyrozhdennykh gamiltonianov na izoenergeticheskoi trekhmernoi sfere”, Uspekhi matem. nauk, 45:6 (1990), 91–111 | MR

[9] Bolsinov A.V., Fomenko A.T., “Integriruemye geodezicheskie potoki na sfere, porozhdennye sistemami Goryacheva–Chaplygina i Kovalevskoi v dinamike tverdogo tela”, Matem. zametki, 56:2 (1994), 139–142 | Zbl

[10] Bolsinov A.V., Fomenko A.T., “Application of classification theory for integrable Hamiltonian systems to geodesic flows on 2-sphere and 2-torus and to the description of the topological structure of momentum mapping near singular point”, J. Math. Sci., 78:5 (1996), 542–555 | DOI | MR | Zbl

[11] Bolsinov A.V., Matveev V.S., Fomenko A.T., “Dvumernye rimanovy metriki s integriruemym geodezicheskim potokom. Lokalnaya i globalnaya geometriya”, Matem. sb., 189:10 (1998), 5–32 | DOI | Zbl

[12] Bolsinov A.V., Kozlov V.V., Fomenko A.T., “Printsip Mopertyui i geodezicheskie potoki na sfere, voznikayuschie iz integriruemykh sluchaev dinamiki tverdogo tela”, Uspekhi matem. nauk, 50:3 (303) (1995), 3–32 | MR | Zbl