@article{VMUMM_2016_1_a5,
author = {E. A. Kudryavtseva and D. A. Fedoseev},
title = {The {Bertrand{\textquoteright}s} manifolds with equators},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {40--44},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/}
}
E. A. Kudryavtseva; D. A. Fedoseev. The Bertrand’s manifolds with equators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/
[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl
[2] Besse A., Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1981 | MR
[3] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR | Zbl
[4] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C.r. Acad. sci. Paris, 77 (1873), 849–853 | Zbl
[5] Perlick V., “Bertrand spacetimes”, Class. Quantum Grav., 9 (1992), 1009–1021 | DOI | MR | Zbl
[6] Zagryadskii O.A., Fedoseev D.A., “O globalnoi i lokalnoi realizuemosti rimanovykh mnogoobrazii Bertrana v vide poverkhnostei vrascheniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2015, no. 3, 18–24 | MR | Zbl
[7] Zagryadskii O.A., Fedoseev D.A., “O yavnom vide metrik Bertrana”, Vestn. Mosk. un-ta. Matem. Mekhan., 2013, no. 5, 46–50 | MR | Zbl
[8] Nguen T.Z., Fomenko A.T., “Topologicheskaya klassifikatsiya integriruemykh nevyrozhdennykh gamiltonianov na izoenergeticheskoi trekhmernoi sfere”, Uspekhi matem. nauk, 45:6 (1990), 91–111 | MR
[9] Bolsinov A.V., Fomenko A.T., “Integriruemye geodezicheskie potoki na sfere, porozhdennye sistemami Goryacheva–Chaplygina i Kovalevskoi v dinamike tverdogo tela”, Matem. zametki, 56:2 (1994), 139–142 | Zbl
[10] Bolsinov A.V., Fomenko A.T., “Application of classification theory for integrable Hamiltonian systems to geodesic flows on 2-sphere and 2-torus and to the description of the topological structure of momentum mapping near singular point”, J. Math. Sci., 78:5 (1996), 542–555 | DOI | MR | Zbl
[11] Bolsinov A.V., Matveev V.S., Fomenko A.T., “Dvumernye rimanovy metriki s integriruemym geodezicheskim potokom. Lokalnaya i globalnaya geometriya”, Matem. sb., 189:10 (1998), 5–32 | DOI | Zbl
[12] Bolsinov A.V., Kozlov V.V., Fomenko A.T., “Printsip Mopertyui i geodezicheskie potoki na sfere, voznikayuschie iz integriruemykh sluchaev dinamiki tverdogo tela”, Uspekhi matem. nauk, 50:3 (303) (1995), 3–32 | MR | Zbl