The Bertrand’s manifolds with equators
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential are studied in the paper. A complete classification of such Riemannian manifolds and potentials on them possessing the strengthened Bertrand property, i.e., any orbit not contained in any meridian is closed, is obtained.
@article{VMUMM_2016_1_a5,
     author = {E. A. Kudryavtseva and D. A. Fedoseev},
     title = {The {Bertrand{\textquoteright}s} manifolds with equators},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--44},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - D. A. Fedoseev
TI  - The Bertrand’s manifolds with equators
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 40
EP  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/
LA  - ru
ID  - VMUMM_2016_1_a5
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A D. A. Fedoseev
%T The Bertrand’s manifolds with equators
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 40-44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/
%G ru
%F VMUMM_2016_1_a5
E. A. Kudryavtseva; D. A. Fedoseev. The Bertrand’s manifolds with equators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a5/