Complete rational arithmetic sums
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 60-61
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $q>1$ be an integer, $f(x)=a_nx^n+\ldots +a_1x+a_0$ be a polynomial with the integer coefficients, and $(a_n,\ldots ,a_1,q)=1.$ Then is valid the estimation $$\left|S\left(\frac{f(x)}{q}\right)\right|=\left|\sum_{x=1}^q\rho\left(\frac{f(x)}q\right)\right|\ll q^{1-1/n}, $$ where $\rho(t)=0,5-\{t\}.$
            
            
            
          
        
      @article{VMUMM_2016_1_a10,
     author = {V. N. Chubarikov},
     title = {Complete rational arithmetic sums},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--61},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/}
}
                      
                      
                    V. N. Chubarikov. Complete rational arithmetic sums. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 60-61. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/
