Complete rational arithmetic sums
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 60-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $q>1$ be an integer, $f(x)=a_nx^n+\ldots +a_1x+a_0$ be a polynomial with the integer coefficients, and $(a_n,\ldots ,a_1,q)=1.$ Then is valid the estimation $$\left|S\left(\frac{f(x)}{q}\right)\right|=\left|\sum_{x=1}^q\rho\left(\frac{f(x)}q\right)\right|\ll q^{1-1/n}, $$ where $\rho(t)=0,5-\{t\}.$
@article{VMUMM_2016_1_a10,
     author = {V. N. Chubarikov},
     title = {Complete rational arithmetic sums},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {60--61},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - Complete rational arithmetic sums
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 60
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/
LA  - ru
ID  - VMUMM_2016_1_a10
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T Complete rational arithmetic sums
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 60-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/
%G ru
%F VMUMM_2016_1_a10
V. N. Chubarikov. Complete rational arithmetic sums. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 60-61. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/