Complete rational arithmetic sums
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 60-61
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $q>1$ be an integer, $f(x)=a_nx^n+\ldots +a_1x+a_0$ be a polynomial with the integer coefficients, and $(a_n,\ldots ,a_1,q)=1.$ Then is valid the estimation $$\left|S\left(\frac{f(x)}{q}\right)\right|=\left|\sum_{x=1}^q\rho\left(\frac{f(x)}q\right)\right|\ll q^{1-1/n}, $$ where $\rho(t)=0,5-\{t\}.$
@article{VMUMM_2016_1_a10,
author = {V. N. Chubarikov},
title = {Complete rational arithmetic sums},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {60--61},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/}
}
V. N. Chubarikov. Complete rational arithmetic sums. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 60-61. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a10/
[1] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR
[2] Khua L.K., Metod trigonometricheskikh summ i ego primeneniya v teorii chisel, Mir, M., 1964 | MR
[3] Chen J.R., “On Professor Hua's estimate on exponential sums”, Acta Sci. Sinica, 20:6 (1977), 711–719 | MR | Zbl
[4] Chubarikov V.N., “O kratnykh ratsionalnykh trigonometricheskikh summakh i kratnykh integralakh”, Matem. zametki, 20:1 (1976), 61–68 | MR | Zbl
[5] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR
[6] Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N., Lektsii po matematicheskomu analizu, Drofa, M., 2006