Isometric embeddings of finite metric spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that there exists a metric on the Cantor set such that any finite metric space with the diameter not exceeding 1 and the number of points not exceeding $n$ can be isometrically embedded into it. We also prove that for any $m,n \in \mathbb N$ there exists a Cantor set in $\mathbb R^m$ that isometrically contains all finite metric spaces embedded into $\mathbb R^m$, containing not more than $n$ points, and having the diameter not exceeding $1$. The latter result is proved for a wide class of metrics on $\mathbb R^m$ and in particular for the Euclidean metric.
@article{VMUMM_2016_1_a0,
author = {A. I. Oblakova},
title = {Isometric embeddings of finite metric spaces},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--9},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/}
}
A. I. Oblakova. Isometric embeddings of finite metric spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/
[1] Iliadis S.D., “A separable complete metric space of dimension $n$ containing isometrically all compact metric spaces of dimension $n$”, Topol. and its Appl., 160:11 (2013), 1271–1283 | DOI | MR | Zbl
[2] Iliadis S.D., Naidoo I., “On isometric embeddings of compact metric spaces of a countable dimension”, Topol. and its Appl., 160:11 (2013), 1284–1291 | DOI | MR | Zbl
[3] Tits J., Groupes à croissance polynomiale, Séminaire Bourbaki, 572, 1980–1981
[4] Iliadis S.D., Universal spaces and mappings, Elsevier Science, Amsterdam, 2005 | MR | Zbl
[5] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[6] Gurevich V., Volmen G., Teoriya razmernosti, IL, M., 1948