Isometric embeddings of finite metric spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a metric on the Cantor set such that any finite metric space with the diameter not exceeding 1 and the number of points not exceeding $n$ can be isometrically embedded into it. We also prove that for any $m,n \in \mathbb N$ there exists a Cantor set in $\mathbb R^m$ that isometrically contains all finite metric spaces embedded into $\mathbb R^m$, containing not more than $n$ points, and having the diameter not exceeding $1$. The latter result is proved for a wide class of metrics on $\mathbb R^m$ and in particular for the Euclidean metric.
@article{VMUMM_2016_1_a0,
     author = {A. I. Oblakova},
     title = {Isometric embeddings of finite metric spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/}
}
TY  - JOUR
AU  - A. I. Oblakova
TI  - Isometric embeddings of finite metric spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2016
SP  - 3
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/
LA  - ru
ID  - VMUMM_2016_1_a0
ER  - 
%0 Journal Article
%A A. I. Oblakova
%T Isometric embeddings of finite metric spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2016
%P 3-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/
%G ru
%F VMUMM_2016_1_a0
A. I. Oblakova. Isometric embeddings of finite metric spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/