Isometric embeddings of finite metric spaces
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 3-9
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that there exists a metric on the Cantor set such that any finite metric space with the diameter not exceeding 1 and the number of points not exceeding $n$ can be isometrically embedded into it. We also prove that for any $m,n \in \mathbb N$ there exists a Cantor set in $\mathbb R^m$ that isometrically contains all finite metric spaces embedded into $\mathbb R^m$, containing not more than $n$ points, and having the diameter not exceeding $1$. The latter result is proved for a wide class of metrics on $\mathbb R^m$ and in particular for the Euclidean metric.
			
            
            
            
          
        
      @article{VMUMM_2016_1_a0,
     author = {A. I. Oblakova},
     title = {Isometric embeddings of finite metric spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/}
}
                      
                      
                    A. I. Oblakova. Isometric embeddings of finite metric spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2016_1_a0/
