Ricci curvature of a weighted tree
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 52-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formula of coarse Ricci curvature for weighed trees with a random walk on vertex set is presented in the paper. A criterion of restoration of binary trees topology from the Ricci curvature matrix is obtained.
@article{VMUMM_2015_6_a9,
     author = {O. V. Rubleva},
     title = {Ricci curvature of a weighted tree},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {52--54},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a9/}
}
TY  - JOUR
AU  - O. V. Rubleva
TI  - Ricci curvature of a weighted tree
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 52
EP  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a9/
LA  - ru
ID  - VMUMM_2015_6_a9
ER  - 
%0 Journal Article
%A O. V. Rubleva
%T Ricci curvature of a weighted tree
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 52-54
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a9/
%G ru
%F VMUMM_2015_6_a9
O. V. Rubleva. Ricci curvature of a weighted tree. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 52-54. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a9/

[1] Besse A., Mnogoobraziya Einshteina, v 2 t., v. 1, 2, Mir, M., 1990 | MR

[2] Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159v1

[3] Perelman G., Ricci flow with surgery on three-manifolds, arXiv: math.DG/0303109v1

[4] Bakry D., Emery M., “Diffusions hypercontractives”, Lect. Notes Math., 1123, 1985, 177–206 | DOI | MR | Zbl

[5] Ollivier Y., “Ricci curvature of Markov chains on metric spaces”, J. Funct. Anal., 256:3 (2009), 810–864 | DOI | MR | Zbl

[6] Chung F., Yau S.-T., “Logarithmic Harnack inequalities”, Math. Res. Lett., 3 (1996), 793–812 | DOI | MR | Zbl

[7] Lin Y., Lu L.Y., Yau S.T., “Ricci curvature of graphs”, Tohoku Math. J., 63 (2011), 605–627 | DOI | MR | Zbl

[8] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl