@article{VMUMM_2015_6_a9,
author = {O. V. Rubleva},
title = {Ricci curvature of a weighted tree},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {52--54},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a9/}
}
O. V. Rubleva. Ricci curvature of a weighted tree. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 52-54. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a9/
[1] Besse A., Mnogoobraziya Einshteina, v 2 t., v. 1, 2, Mir, M., 1990 | MR
[2] Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159v1
[3] Perelman G., Ricci flow with surgery on three-manifolds, arXiv: math.DG/0303109v1
[4] Bakry D., Emery M., “Diffusions hypercontractives”, Lect. Notes Math., 1123, 1985, 177–206 | DOI | MR | Zbl
[5] Ollivier Y., “Ricci curvature of Markov chains on metric spaces”, J. Funct. Anal., 256:3 (2009), 810–864 | DOI | MR | Zbl
[6] Chung F., Yau S.-T., “Logarithmic Harnack inequalities”, Math. Res. Lett., 3 (1996), 793–812 | DOI | MR | Zbl
[7] Lin Y., Lu L.Y., Yau S.T., “Ricci curvature of graphs”, Tohoku Math. J., 63 (2011), 605–627 | DOI | MR | Zbl
[8] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl