Realizability of singular levels of Morse functions as unions of geodesies
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 45-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We list special graphs of degree 4 with at most 3 vertices (atoms from the theory of integrable Hamiltonian systems) which could be represented by a union of closed geodesics on the one of the following surfaces with metric of constant curvature: sphere, projective plane, torus, Klein bottle.
@article{VMUMM_2015_6_a7,
     author = {I. N. Shnurnikov},
     title = {Realizability of singular levels of {Morse} functions as unions of geodesies},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {45--48},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/}
}
TY  - JOUR
AU  - I. N. Shnurnikov
TI  - Realizability of singular levels of Morse functions as unions of geodesies
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 45
EP  - 48
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/
LA  - ru
ID  - VMUMM_2015_6_a7
ER  - 
%0 Journal Article
%A I. N. Shnurnikov
%T Realizability of singular levels of Morse functions as unions of geodesies
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 45-48
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/
%G ru
%F VMUMM_2015_6_a7
I. N. Shnurnikov. Realizability of singular levels of Morse functions as unions of geodesies. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 45-48. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/