Realizability of singular levels of Morse functions as unions of geodesies
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 45-48
Voir la notice de l'article provenant de la source Math-Net.Ru
We list special graphs of degree 4 with at most 3 vertices (atoms from the theory of integrable Hamiltonian systems) which could be represented by a union of closed geodesics on the one of the following surfaces with metric of constant curvature: sphere, projective plane, torus, Klein bottle.
@article{VMUMM_2015_6_a7,
author = {I. N. Shnurnikov},
title = {Realizability of singular levels of {Morse} functions as unions of geodesies},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {45--48},
publisher = {mathdoc},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/}
}
TY - JOUR AU - I. N. Shnurnikov TI - Realizability of singular levels of Morse functions as unions of geodesies JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 45 EP - 48 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/ LA - ru ID - VMUMM_2015_6_a7 ER -
I. N. Shnurnikov. Realizability of singular levels of Morse functions as unions of geodesies. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 45-48. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/