Realizability of singular levels of Morse functions as unions of geodesies
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 45-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We list special graphs of degree 4 with at most 3 vertices (atoms from the theory of integrable Hamiltonian systems) which could be represented by a union of closed geodesics on the one of the following surfaces with metric of constant curvature: sphere, projective plane, torus, Klein bottle.
@article{VMUMM_2015_6_a7,
     author = {I. N. Shnurnikov},
     title = {Realizability of singular levels of {Morse} functions as unions of geodesies},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {45--48},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/}
}
TY  - JOUR
AU  - I. N. Shnurnikov
TI  - Realizability of singular levels of Morse functions as unions of geodesies
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 45
EP  - 48
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/
LA  - ru
ID  - VMUMM_2015_6_a7
ER  - 
%0 Journal Article
%A I. N. Shnurnikov
%T Realizability of singular levels of Morse functions as unions of geodesies
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 45-48
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/
%G ru
%F VMUMM_2015_6_a7
I. N. Shnurnikov. Realizability of singular levels of Morse functions as unions of geodesies. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 45-48. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a7/

[1] Fomenko A.T., “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[2] Fomenko A.T., “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | MR | Zbl

[3] Fomenko A.T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, Uspekhi matem. nauk, 44:1(265) (1989), 145–173 | MR

[4] Fomenko A.T., “Teoriya bordizmov integriruemykh gamiltonovykh nevyrozhdennykh sistem s dvumya stepenyami svobody. Novyi topologicheskii invariant mnogomernykh integriruemykh sistem”, Izv. AN SSSR. Ceriya matem., 55:4 (1991), 747–779

[5] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–35 | MR

[6] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. cb., 199:9 (2008), 3–96 | DOI | MR | Zbl

[7] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izdatelskii dom “Udmurtskii universitet”, Izhevsk, 1999 | MR