The functions that do not change types of minimal fillings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 42-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that a function measuring distances in metric spaces and preserving the types of their minimal fillings has the form $f(x)=kx+b$. It is sufficient to assume in this case that the types of fillings are preserved for spaces consisting of not more than five points.
@article{VMUMM_2015_6_a6,
     author = {S. Yu. Lipatov},
     title = {The functions that do not change types of minimal fillings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--45},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a6/}
}
TY  - JOUR
AU  - S. Yu. Lipatov
TI  - The functions that do not change types of minimal fillings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 42
EP  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a6/
LA  - ru
ID  - VMUMM_2015_6_a6
ER  - 
%0 Journal Article
%A S. Yu. Lipatov
%T The functions that do not change types of minimal fillings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 42-45
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a6/
%G ru
%F VMUMM_2015_6_a6
S. Yu. Lipatov. The functions that do not change types of minimal fillings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 42-45. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a6/

[1] Ivanov A.O., Tuzhilin A.A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[2] Ivanov A.O., Tuzhilin A.A., Teoriya ekstremalnykh setei, IKI, Izhevsk, 2003

[3] Rubleva O.V., “Kriterii additivnosti konechnogo metricheskogo prostranstva i minimalnye zapolneniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 2, 8–11 | MR | Zbl

[4] Ovsyannikov Z.N., “Otkrytoe semeistvo mnozhestv, dlya kotorykh minimalnoe zapolnenie ne edinstvenno”, Fund. i prikl. matem., 18:2 (2013), 153–156

[5] Laut I.L., Ovsyannikov Z.N., “Vid minimalnykh razvetvlennykh geodezicheskikh v normirovannom prostranstve opredelyaet normu”, Fund. i prikl. matem., 18:2 (2013), 67–77

[6] Mischenko V.A., “Otsenki otnosheniya Shteinera–Gromova rimanovykh mnogoobrazii”, Fund. i prikl. matem., 18:2 (2013), 119–124

[7] Ovsyannikov Z.N., “Otnosheniya Shteinera, Shteinera–Gromova i subotnosheniya Shteinera dlya prostranstva kompaktov v evklidovoi ploskosti s rasstoyaniem Khausdorfa”, Fund. i prikl. matem., 18:2 (2013), 157–165

[8] Ovsyannikov Z.N., “Subotnoshenie Shteinera dlya pyati tochek na ploskosti i chetyrekh tochek v prostranstve”, Fund. i prikl. matem., 18:2 (2013), 167–179

[9] Pakhomova A.S., “Kriterii nepreryvnosti otnoshenii tipa Shteinera v prostranstve Gromova–Khausdorfa”, Fund. i prikl. matem., 18:2 (2013), 157–165

[10] Ivanov A., Tuzhilin A., “Minimal fillings of finite metric spaces”, Contemp. Math., 625, 2014, 9–35 | DOI | MR | Zbl

[11] Ivanov A.O., Ovsyannikov Z.N., Strelkova N.P., Tuzhilin A.A, “Odnomernye minimalnye zapolneniya s rebrami otritsatelnogo vesa”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 5, 3–8

[12] Eremin A.Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Matem. sb., 204:9 (2013), 51–72 | DOI | MR | Zbl