Elastoplastic models to describe experimental data on the spallation fracture under impact of plates
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 29-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study of numerical investigation of irreversible dynamic deforming and spallation fracture under plane impact of plates is given. The following two models for the behavior of the materials of the plates are used: a model of a damageable elastoplastic medium and a dislocation model. The computations were performed with the use of the TIS-1D software complex based on the method of separation into physical processes, the finite volume method, and moving Eulerian grids.
@article{VMUMM_2015_6_a4,
     author = {A. B. Kiselev and A. V. Mischenko},
     title = {Elastoplastic models to describe experimental data on the spallation fracture under impact of plates},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--36},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a4/}
}
TY  - JOUR
AU  - A. B. Kiselev
AU  - A. V. Mischenko
TI  - Elastoplastic models to describe experimental data on the spallation fracture under impact of plates
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 29
EP  - 36
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a4/
LA  - ru
ID  - VMUMM_2015_6_a4
ER  - 
%0 Journal Article
%A A. B. Kiselev
%A A. V. Mischenko
%T Elastoplastic models to describe experimental data on the spallation fracture under impact of plates
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 29-36
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a4/
%G ru
%F VMUMM_2015_6_a4
A. B. Kiselev; A. V. Mischenko. Elastoplastic models to describe experimental data on the spallation fracture under impact of plates. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 29-36. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a4/

[1] V.M. Fomin, A.I. Gulidov, G.A. Sapozhnikov i dr., Vysokoskorostnoe vzaimodeistvie tel, Izd-vo SO RAN, Novosibirsk, 1999

[2] Kh.A. Rakhmatulin, E.I. Shemyakin, Yu.A. Demyanov, A.V. Zvyagin, Prochnost i razrushenie pri kratkovremennykh nagruzkakh, Universitetskaya kniga, Logos, M., 2008 | MR

[3] Kukudzhanov V.N., Vychislitelnaya mekhanika sploshnykh sred, Fizmatlit, M., 2008

[4] Kondaurov V.I., Nikitin L.V., Teoreticheskie osnovy reologii geomaterialov, Nauka, M., 1990

[5] Kiselëv A.B., Yumashev M.V., “Deformirovanie i razrushenie pri udarnom nagruzhenii. Model povrezhdennoi termouprugoplasticheskoi sredy”, Prikl. mekhan. i tekhn. fiz., 1990, no. 5, 116–123

[6] Kiselëv A.B., Yumashev M.V., “Matematicheskaya model deformirovaniya i razrusheniya tverdogo topliva pri udarnom nagruzhenii”, Prikl. mekhan. i tekhn. fiz., 1992, no. 6, 126–134

[7] Kiselëv A.B., “Matematicheskoe modelirovanie dinamicheskogo deformirovaniya i kombinirovannogo razrusheniya termovyazkouprugoplasticheskoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 1998, no. 6, 32–40 | Zbl

[8] Krasnikov V.S., Kuksin A.Yu., Maier A.E., Yanilkin A.V., “Plasticheskaya deformatsiya pri vysokoskorostnom nagruzhenii alyuminiya: mnogomasshtabnyi podkhod”, Fizika tverdogo tela, 52:7 (2010), 1295–1304

[9] Kanel G.I., Razorënov S.V., Utkin A.V., Fortov V.E., Udarno-volnovye yavleniya v kondensirovannykh sredakh, Yanus-K, M., 1996

[10] Kanel G.I., Razorënov S.V., Utkin A.V., Fortov V.E., Eksperimentalnye profili udarnykh voln v kondensirovannykh veschestvakh, Fizmatlit, M., 2008

[11] Kulikovskii A.G., Pogorelov N.V., Semënov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[12] Yanenko N.N., Metod drobnykh shagov dlya resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | MR

[13] Menshov I.S., Mischenko A.V., Serëzhkin A.A., “Chislennoe modelirovanie uprugoplasticheskikh techenii metodom Godunova na podvizhnykh eilerovykh setkakh”, Matem. modelirovanie, 25:8 (2013), 89–108 | Zbl

[14] Kiselëv A.B., Mischenko A.V., “Uprugoplasticheskie zadachi v priblizhenii odnosnogo deformirovannogo sostoyaniya. Analiticheskie i chislennye resheniya”, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 2, 38–46

[15] S.K. Godunov (red.), Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR

[16] Rusanov V.V., “Raschet vzaimodeistviya nestatsionarnykh udarnykh voln s prepyatstviyami”, Zhurn. vychisl. matem. i matem. fiz., 1:2 (1961), 267–279

[17] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Fizmatlit, M., 1987 | MR

[18] Wilkins M.L., Computer simulation of dynamic phenomena, Springer-Verlag, Berlin–Heidelberg–N.Y., 1999 | MR | Zbl

[19] Kachanov L.M., “O vremeni razrusheniya v usloviyakh polzuchesti”, Izv. AN SSSR. Otd-e tekhn. nauk, 1958, no. 8, 26–31 | Zbl

[20] Rabotnov Yu.N., “Mekhanizm dlitelnogo razrusheniya”, Voprosy prochnosti materialov i konstruktsii, Nauka, M., 1959, 5–7

[21] Ilyushin A.A., “Ob odnoi teorii dlitelnoi prochnosti”, Izv. AN SSSR. Mekhan. tverdogo tela, 1967, no. 3, 21–35

[22] Krasnikov V.S., Mayer A.E., Yalovets A.P., “Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations”, Int. J. Plasticity, 27:8 (2011), 1294–1308 | DOI | Zbl