Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 23-28
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of estimation of the distance between two bodies of volume $\varepsilon$ located inside an $n$-dimensional body $B$ of unit volume where $n \to \infty$ is considered. In some cases such distances are bounded by a function of $\varepsilon$ not dependent on $n$. The cases when $B$ is a sphere or a cube are considered.
@article{VMUMM_2015_6_a3,
author = {F. A. Ivlev},
title = {Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--28},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/}
}
TY - JOUR AU - F. A. Ivlev TI - Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 23 EP - 28 IS - 6 UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/ LA - ru ID - VMUMM_2015_6_a3 ER -
F. A. Ivlev. Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 23-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/
[1] Fomenko A.T., Variational problems in topology. The geometry of length, area and volume, Gordon and Breach Science Publishers, N.Y., 1990 | MR | Zbl
[2] Dao Chong Tkhi, Fomenko A.T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR
[3] Shiryaev A.N., Veroyatnost, MTsNMO, M., 2007 | MR