Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 23-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of estimation of the distance between two bodies of volume $\varepsilon$ located inside an $n$-dimensional body $B$ of unit volume where $n \to \infty$ is considered. In some cases such distances are bounded by a function of $\varepsilon$ not dependent on $n$. The cases when $B$ is a sphere or a cube are considered.
@article{VMUMM_2015_6_a3,
     author = {F. A. Ivlev},
     title = {Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--28},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/}
}
TY  - JOUR
AU  - F. A. Ivlev
TI  - Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 23
EP  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/
LA  - ru
ID  - VMUMM_2015_6_a3
ER  - 
%0 Journal Article
%A F. A. Ivlev
%T Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 23-28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/
%G ru
%F VMUMM_2015_6_a3
F. A. Ivlev. Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 23-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/