Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 23-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of estimation of the distance between two bodies of volume $\varepsilon$ located inside an $n$-dimensional body $B$ of unit volume where $n \to \infty$ is considered. In some cases such distances are bounded by a function of $\varepsilon$ not dependent on $n$. The cases when $B$ is a sphere or a cube are considered.
			
            
            
            
          
        
      @article{VMUMM_2015_6_a3,
     author = {F. A. Ivlev},
     title = {Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--28},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/}
}
                      
                      
                    TY - JOUR AU - F. A. Ivlev TI - Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 23 EP - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/ LA - ru ID - VMUMM_2015_6_a3 ER -
F. A. Ivlev. Estimate of the distance between two bodies inside an $n$-dimensional unit cube and a ball. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 23-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a3/
