Generalized separants of differential polynomials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 9-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\in K\{y\}$ be an element of the ring of differential polynomials in one differential variable $y$ with one differential operator $\delta$. For any variable $y_k$, the polynomial $g=\delta^n(f)$ can be represented in the form $g=A_ky_k+g_0$, where $g_0$ does not depend on $y_k$. If $y_k$ is the leader of $g$, then $A_k$ is a separant of the polynomial $f$. A formula for $A_k$ is obtained for sufficiently large numbers $n$ and $k$ and some applications of this formula are presented.
@article{VMUMM_2015_6_a1,
     author = {M. A. Limonov},
     title = {Generalized separants of differential polynomials},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--14},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a1/}
}
TY  - JOUR
AU  - M. A. Limonov
TI  - Generalized separants of differential polynomials
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 9
EP  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a1/
LA  - ru
ID  - VMUMM_2015_6_a1
ER  - 
%0 Journal Article
%A M. A. Limonov
%T Generalized separants of differential polynomials
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 9-14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a1/
%G ru
%F VMUMM_2015_6_a1
M. A. Limonov. Generalized separants of differential polynomials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 9-14. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a1/