Generalized separants of differential polynomials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 9-14
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f\in K\{y\}$ be an element of the ring of differential polynomials in one differential variable $y$ with one differential operator $\delta$. For any variable $y_k$, the polynomial $g=\delta^n(f)$ can be represented in the form $g=A_ky_k+g_0$, where $g_0$ does not depend on $y_k$. If $y_k$ is the leader of $g$, then $A_k$ is a separant of the polynomial $f$. A formula for $A_k$ is obtained for sufficiently large numbers $n$ and $k$ and some applications of this formula are presented.
@article{VMUMM_2015_6_a1,
author = {M. A. Limonov},
title = {Generalized separants of differential polynomials},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {9--14},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a1/}
}
M. A. Limonov. Generalized separants of differential polynomials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 9-14. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a1/
[1] Kolchin E.R., Differential algebra and algebraic groups, Academic Press, N.Y., 1973 | MR | Zbl
[2] Zobnin A., Limonov M., “Algorithm for checking triviality of “mixed” ideals in the ring of differential polynomials”, Programming and Computer Software, 41:2 (2015), 84–89 | DOI | MR | Zbl
[3] Zobnin A., “Admissible orderings and finiteness criteria for differential standard bases”, Proc. Inter. Symp. Symbolic and Algebraic Computation, ACM, N.Y., 2005, 365–372 | MR | Zbl
[4] Trushin D.V., “Ideal separant v koltse differentsialnykh mnogochlenov”, Fund. i prikl. matem., 13:1 (2007), 215–227
[5] Kolchin E.R., “On the exponents of differential ideals”, Ann. Math. Ser. 2, 42:3 (1941), 740–777 | DOI | MR