$\mathcal{A}_k$-singularities of curves and surfaces of fixed degree, quasi-degree, or multi-degree
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study $\mathcal{A}_k$-singularities that can exist on curves (surfaces, respectively) of fixed degree, quasi-degree, or multi-degree in $\mathbb{C}^2$ ($\mathbb{C}^3$, respectively).
@article{VMUMM_2015_6_a0,
     author = {E. A. Astashov},
     title = {$\mathcal{A}_k$-singularities of curves and surfaces of fixed degree, quasi-degree, or multi-degree},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a0/}
}
TY  - JOUR
AU  - E. A. Astashov
TI  - $\mathcal{A}_k$-singularities of curves and surfaces of fixed degree, quasi-degree, or multi-degree
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 9
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a0/
LA  - ru
ID  - VMUMM_2015_6_a0
ER  - 
%0 Journal Article
%A E. A. Astashov
%T $\mathcal{A}_k$-singularities of curves and surfaces of fixed degree, quasi-degree, or multi-degree
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-9
%N 6
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a0/
%G ru
%F VMUMM_2015_6_a0
E. A. Astashov. $\mathcal{A}_k$-singularities of curves and surfaces of fixed degree, quasi-degree, or multi-degree. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2015_6_a0/

[1] Greuel G.-M., Lossen C., Shustin E., “Plane curves of minimal degree with prescribed singularities”, Invent. Math., 133:3 (1998), 539–580 | DOI | MR | Zbl

[2] Gusein-Zade S.M., Nekhoroshev N.N., “Ob osobennostyakh tipa $\mathcal{A}_k$ na ploskikh krivykh fiksirovannoi stepeni”, Funkts. analiz i ego pril., 34:3 (2000), 69–70 | DOI | MR | Zbl

[3] Kollár J., “An effective Łojasiewicz inequality for real polynomials”, Periodica math. hung., 38:3 (1999), 213–221 | DOI | MR | Zbl

[4] Astashov E., “On algebraic hypersurfaces of fixed degree in $\mathbb{C}^n$ with prescribed singularities”, Proc. Int. miniconf. “Qualitative theory of differential equations and applications” (16 June 2012), MESI, M., 2013, 5–19 | MR

[5] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2009 | MR

[6] Steenbrink J., “Intersection form for quasi-homogeneous singularities”, Compos. Math., 34:2 (1977), 211–223 | MR | Zbl