@article{VMUMM_2015_5_a9,
author = {Yu. A. Kombarov},
title = {Upper estimate of realization complexity of linear functions in a basis consisting of multi-input elements},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {47--50},
year = {2015},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a9/}
}
TY - JOUR AU - Yu. A. Kombarov TI - Upper estimate of realization complexity of linear functions in a basis consisting of multi-input elements JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 47 EP - 50 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a9/ LA - ru ID - VMUMM_2015_5_a9 ER -
%0 Journal Article %A Yu. A. Kombarov %T Upper estimate of realization complexity of linear functions in a basis consisting of multi-input elements %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 47-50 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a9/ %G ru %F VMUMM_2015_5_a9
Yu. A. Kombarov. Upper estimate of realization complexity of linear functions in a basis consisting of multi-input elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 47-50. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a9/
[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, M., 1984
[2] Redkin N.P., “Dokazatelstvo minimalnosti nekotorykh skhem iz funktsionalnykh elementov”, Problemy kibernetiki, 23, Nauka, M., 1970, 83–101 | MR
[3] Redkin N.P., “O minimalnoi realizatsii lineinoi funktsii skhemoi iz funktsionalnykh elementov”, Kibernetika, 1971, no. 6, 31–38 | MR | Zbl
[4] Kombarov Yu.A., “O minimalnykh skhemakh v bazise Sheffera dlya lineinykh bulevykh funktsii”, Diskretn. analiz i issled. operatsii, 20:4 (2013), 65–87 | MR | Zbl
[5] Schnorr C.P., “Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen”, Computing, 13 (1974), 155–171 | DOI | MR | Zbl
[6] Kombarov Yu.A., “O minimalnykh realizatsiyakh lineinykh bulevykh funktsii”, Diskretn. analiz i issled. operatsii, 19:3 (2012), 39–57 | MR | Zbl
[7] Lai H.Ch., Muroga S., “Logic networks with a minimum number of NOR (NAND) gates for parity functions of $n$ variables”, IEEE Trans. Comput., C-36:2 (1987), 157–166
[8] Wegner I., “The complexity of the parity function in unbounded fan-in, unbounded depth circuits”, Theor. Comput. Sci., 85 (1991), 155–170 | DOI | MR