Liouville classification of integrable Hamiltonian systems on surfaces of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 41-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithm of calculation of the Fomenko–Zieschang invariants for the Hamiltonian systems on 2-dimensional surfaces of revolution is described in this paper in the case of potential $V(r)=\cos r$. One typical example of the investigated system was studied in this article. Classical examples of the systems which are equivalent in the sense of Liouville to the studied system were founded. It is shown that the studied system is equivalent to geodesic flow on corresponding surface.
@article{VMUMM_2015_5_a7,
     author = {E. O. Kantonistova},
     title = {Liouville classification of integrable {Hamiltonian} systems on surfaces of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {41--44},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/}
}
TY  - JOUR
AU  - E. O. Kantonistova
TI  - Liouville classification of integrable Hamiltonian systems on surfaces of revolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 41
EP  - 44
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/
LA  - ru
ID  - VMUMM_2015_5_a7
ER  - 
%0 Journal Article
%A E. O. Kantonistova
%T Liouville classification of integrable Hamiltonian systems on surfaces of revolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 41-44
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/
%G ru
%F VMUMM_2015_5_a7
E. O. Kantonistova. Liouville classification of integrable Hamiltonian systems on surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 41-44. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/

[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR

[2] Bolsinov A.V., Rikhter P., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. cb., 191:2 (2000), 3–42 | DOI | Zbl

[3] Trofimov V.V., Fomenko A.T., “Integriruemost po Liuvillyu gamiltonovykh sistem na algebrakh Li”, Uspekhi matem. nauk, 39:2 (1984), 3–56 | MR | Zbl

[4] Brailov A.V., Fomenko A.T., “Topologiya integralnykh mnogoobrazii vpolne integriruemykh gamiltonovykh sistem”, Matem. sb., 133:3 (1987), 375–385

[5] Kantonistova E.O., “Tselochislennye reshetki peremenykh deistviya dlya sistemy “cfericheskii mayatnik””, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 4, 6–17 | MR | Zbl

[6] Kantonistova E.O., “Tselochislennye reshetki peremennykh deistvie dlya obobschennogo sluchaya Lagranzha”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 1, 54–58 | MR | Zbl