Liouville classification of integrable Hamiltonian systems on surfaces of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 41-44
Voir la notice de l'article provenant de la source Math-Net.Ru
The algorithm of calculation of the Fomenko–Zieschang invariants for the Hamiltonian systems on 2-dimensional surfaces of revolution is described in this paper in the case of potential $V(r)=\cos r$. One typical example of the investigated system was studied in this article. Classical examples of the systems which are equivalent in the sense of Liouville to the studied system were founded. It is shown that the studied system is equivalent to geodesic flow on corresponding surface.
@article{VMUMM_2015_5_a7,
author = {E. O. Kantonistova},
title = {Liouville classification of integrable {Hamiltonian} systems on surfaces of revolution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {41--44},
publisher = {mathdoc},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/}
}
TY - JOUR AU - E. O. Kantonistova TI - Liouville classification of integrable Hamiltonian systems on surfaces of revolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 41 EP - 44 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/ LA - ru ID - VMUMM_2015_5_a7 ER -
E. O. Kantonistova. Liouville classification of integrable Hamiltonian systems on surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 41-44. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/