@article{VMUMM_2015_5_a7,
author = {E. O. Kantonistova},
title = {Liouville classification of integrable {Hamiltonian} systems on surfaces of revolution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {41--44},
year = {2015},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/}
}
TY - JOUR AU - E. O. Kantonistova TI - Liouville classification of integrable Hamiltonian systems on surfaces of revolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 41 EP - 44 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/ LA - ru ID - VMUMM_2015_5_a7 ER -
E. O. Kantonistova. Liouville classification of integrable Hamiltonian systems on surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 41-44. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a7/
[1] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | MR
[2] Bolsinov A.V., Rikhter P., Fomenko A.T., “Metod krugovykh molekul i topologiya volchka Kovalevskoi”, Matem. cb., 191:2 (2000), 3–42 | DOI | Zbl
[3] Trofimov V.V., Fomenko A.T., “Integriruemost po Liuvillyu gamiltonovykh sistem na algebrakh Li”, Uspekhi matem. nauk, 39:2 (1984), 3–56 | MR | Zbl
[4] Brailov A.V., Fomenko A.T., “Topologiya integralnykh mnogoobrazii vpolne integriruemykh gamiltonovykh sistem”, Matem. sb., 133:3 (1987), 375–385
[5] Kantonistova E.O., “Tselochislennye reshetki peremenykh deistviya dlya sistemy “cfericheskii mayatnik””, Vestn. Mosk. un-ta. Matem. Mekhan., 2014, no. 4, 6–17 | MR | Zbl
[6] Kantonistova E.O., “Tselochislennye reshetki peremennykh deistvie dlya obobschennogo sluchaya Lagranzha”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 1, 54–58 | MR | Zbl