The axiom of cosymplectic surfaces and $W_4$-manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 34-37
Voir la notice de l'article provenant de la source Math-Net.Ru
An almost Hermitian manifold satisfies the cosymplectic $t$-hypersurfaces axiom, if a cosymplectic hypersurface with type number $t$ passes through every its point. It is proved that if an arbitrary $W_4$-manifold satisfies the cosymplectic $t$-hypersurfaces axiom with $t\leq1$, then this manifold is Kählerian.
@article{VMUMM_2015_5_a5,
author = {M. B. Banaru},
title = {The axiom of cosymplectic surfaces and $W_4$-manifolds},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {34--37},
publisher = {mathdoc},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a5/}
}
M. B. Banaru. The axiom of cosymplectic surfaces and $W_4$-manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 34-37. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a5/