Limit equations of motion for mechanical systems with vibrating elements
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 23-33
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies mechanical systems with rapidly oscillating elements. We suggested a method to obtain limiting equations of such systems when the oscillation frequency tends to infinity. We considered a mechanical system with an arbitrary number of degrees of freedom subject to rapid periodic vibrations with zero mean. Its motion can be described by second-order equations. Also we obtained an explicit form of the limiting equations of motion written in the form of a system of first-order differential equations.
@article{VMUMM_2015_5_a4,
author = {A. A. Markeeva and M. A. Levin},
title = {Limit equations of motion for mechanical systems with vibrating elements},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--33},
publisher = {mathdoc},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a4/}
}
TY - JOUR AU - A. A. Markeeva AU - M. A. Levin TI - Limit equations of motion for mechanical systems with vibrating elements JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 23 EP - 33 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a4/ LA - ru ID - VMUMM_2015_5_a4 ER -
A. A. Markeeva; M. A. Levin. Limit equations of motion for mechanical systems with vibrating elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 23-33. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a4/