A certain mean value theorem in the number theory
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 51-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mean-value theorem for the sum of a “saw-tooth” function of a polynomial is proved. The estimate is exact relative to the main parameter which is the length of the interval of summation.
@article{VMUMM_2015_5_a10,
     author = {V. N. Chubarikov},
     title = {A certain mean value theorem in the number theory},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--54},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a10/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - A certain mean value theorem in the number theory
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 51
EP  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a10/
LA  - ru
ID  - VMUMM_2015_5_a10
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T A certain mean value theorem in the number theory
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 51-54
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a10/
%G ru
%F VMUMM_2015_5_a10
V. N. Chubarikov. A certain mean value theorem in the number theory. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 51-54. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a10/

[1] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1980 | MR

[2] Hua L.-K., “An improvement of Vinogradov's mean-value theorem and several applications”, Quart. J. Math., 20 (1949), 48–61 | DOI | MR | Zbl

[3] Arkhipov G.I., “Teorema o srednem znachenii modulya kratnoi trigonometricheskoi summy”, Matem. zametki, 17 (1975), 84–90 | MR | Zbl

[4] Arkhipov G.I., Izbrannye trudy, Izd-vo Orlov. gos. un-ta, Orel, 2013 | MR

[5] Arkhipov G.I., Chubarikov V.N., “Kratnye trigonometricheskie summy”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 209–220 | MR | Zbl

[6] Arkhipov G.I., Chubarikov V.N., Karatsuba A.A., Trigonometric sums in number theory and analysis, De Gruyter expositions in mathematics, 39, Berlin–N.Y., 2004 | MR | Zbl

[7] Franel J., “Les suites de Farey et le probleme des nombres premiers”, Göttinger Nachr., 1924, 198–201 | Zbl

[8] Landau E., Vorlesungen über Zahlentheorie, v. 2, Leipzig, 1927

[9] Romanov N.P., Teoriya chisel i funktsionalnyi analiz, sb. trudov, Izd-vo Tom. un-ta, Tomsk, 2013

[10] Greaves G.R.H., Hall R.R., Huxley M.N., Wilson J.C., “Multiple Franel integrals”, Mathematika, 40 (1993), 51–70 | DOI | MR | Zbl