Gaussian copula time series with heavy tails and strong time dependence
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 3-7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of functions $f$ is described for which the random variable $X=f(\xi)$, where $\xi$ is a standard normal random variable, belongs to Fréchet maximum domain of attraction. For any $f$ from this class, a limit theorem for the maximum of the sequence $X(k)=f(\xi_{k})$, $k=1,2,\dots$, is proved, where $\xi_{k}$ is a Gaussian stationary sequence with a slowly decreasing correlation.
@article{VMUMM_2015_5_a0,
     author = {A. E. Mazur and V. I. Piterbarg},
     title = {Gaussian copula time series with heavy tails and strong time dependence},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a0/}
}
TY  - JOUR
AU  - A. E. Mazur
AU  - V. I. Piterbarg
TI  - Gaussian copula time series with heavy tails and strong time dependence
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 7
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a0/
LA  - ru
ID  - VMUMM_2015_5_a0
ER  - 
%0 Journal Article
%A A. E. Mazur
%A V. I. Piterbarg
%T Gaussian copula time series with heavy tails and strong time dependence
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-7
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a0/
%G ru
%F VMUMM_2015_5_a0
A. E. Mazur; V. I. Piterbarg. Gaussian copula time series with heavy tails and strong time dependence. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2015), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2015_5_a0/

[1] Embrechts P., Kluppelberg C., Mikosch T., Modeling extremal events: for insurance and finance, Springer, Berlin, 1997 | MR

[2] Cont R., “Long range dependence in financial time series”, Fractals in engineering, eds. E. Lutton, J. Lévy-Véhel, Springer, L., 2005, 159–179 | DOI | Zbl

[3] Resnick S.I., “Heavy tail modeling and teletraffic data: special invited paper”, Ann. Statist., 25:5 (1997), 1805–1869 | DOI | MR | Zbl

[4] Mikosch T., “Modeling dependence and tails of financial time series”, Extreme values in finance, telecommunications, and the environment, eds. B. Finkenstädt, H. Rootzén, Chapman and Hall/CRC, Boca Raton, 2004, 196–297 | MR

[5] Heath D., Resnick S., Samorodnitsky G., “Heavy tails and long range dependence in on/off processes and associated fluid model”, Math. Oper. Res., 23:1 (1998), 145–165 | DOI | MR | Zbl

[6] Cherny A.S., Douady R., Molchanov S.A., On measuring hedge fund isk, , 2008 http://ssrn.com/abstract=1113620

[7] Piterbarg V.I., Asymptotic methods in the theory of Gaussian processes and fields, AMS Transl. Math. Monogr., 148, Providence, Rhode Island, 1996 | MR | Zbl

[8] Lidbetter M. R., Lindgren G., Rotsen X., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR