On a class of oscillating integrals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 55-57
Cet article a éte moissonné depuis la source Math-Net.Ru
The following result is proved in the paper: if for some real $A>0$ and some natural number $n>1$ for all $x$ from $[0,1]$ we have the inequality $|f^{(n)}(x)|\geq A,$ then the following estimate is valid: $$ |I|=\left|\int_0^1\limits\rho(f(x))~dx\right|\leq\min{\{1;4nA^{-1/n}\}}, $$ where $\rho(t)=0,5-\{t\}.$
@article{VMUMM_2015_4_a9,
author = {M. Sh. Shikhsadilov},
title = {On a class of oscillating integrals},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {55--57},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a9/}
}
M. Sh. Shikhsadilov. On a class of oscillating integrals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a9/
[1] Vinogradov I.M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR
[2] Chubarikov V.N., “O kratnykh ratsionalnykh trigonometricheskikh summakh i kratnykh integralakh”, Matem. zametki, 20:1 (1976), 61–68 | MR | Zbl
[3] Arkhipov G.I., Karatsuba A.A., Chubarikov V.N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR
[4] Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N., Lektsii po matematicheskomu analizu, Drofa, M., 2006