On a class of oscillating integrals
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 55-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following result is proved in the paper: if for some real  $A>0$  and some natural number $n>1$  
for all $x$ from $[0,1]$  we have the inequality $|f^{(n)}(x)|\geq A,$ then the following estimate is valid:
$$
|I|=\left|\int_0^1\limits\rho(f(x))~dx\right|\leq\min{\{1;4nA^{-1/n}\}},
$$
where  $\rho(t)=0,5-\{t\}.$
            
            
            
          
        
      @article{VMUMM_2015_4_a9,
     author = {M. Sh. Shikhsadilov},
     title = {On a class of oscillating integrals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {55--57},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a9/}
}
                      
                      
                    M. Sh. Shikhsadilov. On a class of oscillating integrals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 55-57. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a9/
