Lower estimate of the length of the complete test in the basis $\{x|y\}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 49-51
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the length of the complete test is no less than $n+1$ ($n\ge 2$) for any circuit realizing the function $x_1\vee x_2\vee \ldots \vee x_n$ in the “ Sheffer stroke” basis with possible constant faults of type “1”. An example of such circuit is constructed so that the length of the complete test is exactly $n+1$.
@article{VMUMM_2015_4_a7,
author = {Yu. V. Borodina},
title = {Lower estimate of the length of the complete test in the basis $\{x|y\}$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {49--51},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a7/}
}
Yu. V. Borodina. Lower estimate of the length of the complete test in the basis $\{x|y\}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 49-51. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a7/
[1] Lupanov O.B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo MGU, M., 1984
[2] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2002 | MR
[3] Yablonskii S.V., “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matem. voprosy kibernetiki, 1988, no. 1, 5–25
[4] Redkin N.P., Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992
[5] Borodina Yu.V., “O sinteze legkotestiruemykh skhem v sluchae odnotipnykh konstantnykh neispravnostei na vykhodakh elementov”, Vestn. Mosk. un-ta. Vych. matem. i kibern., 2008, no. 1, 40–44 | MR | Zbl