Lower estimate of the length of the complete test in the basis $\{x|y\}$
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 49-51
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the length of the complete test is no less than $n+1$ ($n\ge 2$) for any circuit realizing the function $x_1\vee x_2\vee \ldots \vee x_n$ in the “ Sheffer stroke” basis with possible constant faults of type “1”. An example of such circuit is constructed so that the length of the complete test is exactly $n+1$.
			
            
            
            
          
        
      @article{VMUMM_2015_4_a7,
     author = {Yu. V. Borodina},
     title = {Lower estimate of the length of the complete test in the basis $\{x|y\}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--51},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a7/}
}
                      
                      
                    TY  - JOUR
AU  - Yu. V. Borodina
TI  - Lower estimate of the length of the complete test in the basis $\{x|y\}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 49
EP  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a7/
LA  - ru
ID  - VMUMM_2015_4_a7
ER  - 
                      
                      
                    Yu. V. Borodina. Lower estimate of the length of the complete test in the basis $\{x|y\}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 49-51. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a7/
                  
                