A generalized analysis of perturbation patterns for the Poiseuille flow in a tube
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 40-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linearized problem on stability with respect to the three-dimensional picture of perturbations imposed on a steady flow of Newtonian viscous fluid in a pipe (the Poiseuille flow) is analyzed. The evolution in time of individual harmonics of perturbations both by angle and along axial direction is studied. A passage to quadratic functionals constructed on squares of perturbation velocity components modulus as well as derivatives with respect to the radius of these components is performed. The upper estimate of the stability parameter is obtained. It results the lower estimates of the critical Reynolds numbers in the cases of axially symmetric perturbations and two-dimensional (both axially symmetric and asymmetric) $rz$-perturbations.
@article{VMUMM_2015_4_a5,
     author = {D. V. Georgievskii},
     title = {A generalized analysis of perturbation patterns for the {Poiseuille} flow in a tube},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--45},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a5/}
}
TY  - JOUR
AU  - D. V. Georgievskii
TI  - A generalized analysis of perturbation patterns for the Poiseuille flow in a tube
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 40
EP  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a5/
LA  - ru
ID  - VMUMM_2015_4_a5
ER  - 
%0 Journal Article
%A D. V. Georgievskii
%T A generalized analysis of perturbation patterns for the Poiseuille flow in a tube
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 40-45
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a5/
%G ru
%F VMUMM_2015_4_a5
D. V. Georgievskii. A generalized analysis of perturbation patterns for the Poiseuille flow in a tube. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 40-45. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a5/

[1] Betchov R., Criminale W.O., Stability of Parallel Flows, Academic Press, N.Y.–L., 1967; Betchov R., Kriminale V., Voprosy gidrodinamicheskoi ustoichivosti, Mir, M., 1971

[2] Kozyrev O.R., Stepanyants Yu.A., “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89

[3] Orszag S.A., “Accurate solution of the Orr–Sommerfeld stability equation”, J. Fluid Mech., 50:4 (1971), 689–703 | DOI | Zbl

[4] Dubrovskii V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichii V.A., “Novyi metod priblizhennogo vychisleniya pervykh sobstvennykh chisel spektralnoi zadachi Orra–Zommerfelda”, Dokl. RAN, 378:4 (2001), 443–446 | MR | Zbl

[5] Drazin P.G., Introduction to Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, 2002 ; Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005 | MR | Zbl

[6] Coles D., “Transition in circular Couette flow”, J. Fluid Mech., 21:3 (1965), 385–425 | DOI | Zbl

[7] Pascal J.P., Rasmussen H., “Stability of power law fluid flow between rotating cylinders”, Dynamics and Stability Syst., 10:1 (1995), 65–93 | DOI | MR | Zbl

[8] Georgievskii D.V., “Ustoichivost dvumernykh i trekhmernykh vyazkoplasticheskikh techenii i obobschennaya teorema Skvaira”, Izv. RAN. Mekhan. tverdogo tela, 1993, no. 2, 117–123

[9] Georgievskii D.V., “Applicability of the Squire transformation in linearized problems on shear stability”, Rus. J. Math. Phys., 16:4 (2009), 478–483 | DOI | MR | Zbl

[10] Georgievskii D.V., “Novye otsenki ustoichivosti odnomernykh ploskoparallelnykh techenii vyazkoi neszhimaemoi zhidkosti”, Prikl. matem. i mekhan., 74:4 (2010), 633–644 | MR

[11] Georgievskii D.V., Müller W.H., Abali B.E., “Generalizations of the Orr–Sommerfeld problem for the case in which the unperturbed motion is nonsteady”, Rus. J. Math. Phys., 21:2 (2014), 189–196 | DOI | MR | Zbl

[12] Collatz L., Eigenwertaufgaben mit Technischen Anwendungen, Academische Verlag, Leipzig, 1963 ; Kollatts L., Zadachi na sobstvennye znacheniya, Nauka, M., 1968 | MR | MR

[13] Kamke E., Differentialgleichungen. Lösungsmethoden und Lösungen, v. I, Gewöhnliche Differentialgleichungen, Academische Verlag, Leipzig, 1959 ; Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Mir, M., 1971 | MR | MR