Poincar\'e series of filtration associated with Newton diagram and topological types of singularities
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 24-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Poincaré series of multi-index filtration on the ring of germs defined by S. M. Gusein-Zade and W. Ebeling for the germ of function in terms of its Newton diagram is considered. Examples of functions of two variables are described in the paper. These examples show that the Poincaré series for the germ of function depends not only on the type of the diagram, but also on the germ of the function.
			
            
            
            
          
        
      @article{VMUMM_2015_4_a2,
     author = {G. D. Solomadin},
     title = {Poincar\'e series of filtration associated with {Newton} diagram and topological types of singularities},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/}
}
                      
                      
                    TY - JOUR AU - G. D. Solomadin TI - Poincar\'e series of filtration associated with Newton diagram and topological types of singularities JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 24 EP - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/ LA - ru ID - VMUMM_2015_4_a2 ER -
%0 Journal Article %A G. D. Solomadin %T Poincar\'e series of filtration associated with Newton diagram and topological types of singularities %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 24-28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/ %G ru %F VMUMM_2015_4_a2
G. D. Solomadin. Poincar\'e series of filtration associated with Newton diagram and topological types of singularities. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/
