Poincar\'e series of filtration associated with Newton diagram and topological types of singularities
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 24-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The Poincaré series of multi-index filtration on the ring of germs defined by S. M. Gusein-Zade and W. Ebeling for the germ of function in terms of its Newton diagram is considered. Examples of functions of two variables are described in the paper. These examples show that the Poincaré series for the germ of function depends not only on the type of the diagram, but also on the germ of the function.
@article{VMUMM_2015_4_a2,
     author = {G. D. Solomadin},
     title = {Poincar\'e series of filtration associated with {Newton} diagram and topological types of singularities},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/}
}
TY  - JOUR
AU  - G. D. Solomadin
TI  - Poincar\'e series of filtration associated with Newton diagram and topological types of singularities
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 24
EP  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/
LA  - ru
ID  - VMUMM_2015_4_a2
ER  - 
%0 Journal Article
%A G. D. Solomadin
%T Poincar\'e series of filtration associated with Newton diagram and topological types of singularities
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 24-28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/
%G ru
%F VMUMM_2015_4_a2
G. D. Solomadin. Poincar\'e series of filtration associated with Newton diagram and topological types of singularities. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/