Poincaré series of filtration associated with Newton diagram and topological types of singularities
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 24-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Poincaré series of multi-index filtration on the ring of germs defined by S. M. Gusein-Zade and W. Ebeling for the germ of function in terms of its Newton diagram is considered. Examples of functions of two variables are described in the paper. These examples show that the Poincaré series for the germ of function depends not only on the type of the diagram, but also on the germ of the function.
@article{VMUMM_2015_4_a2,
     author = {G. D. Solomadin},
     title = {Poincar\'e series of filtration associated with {Newton} diagram and topological types of singularities},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/}
}
TY  - JOUR
AU  - G. D. Solomadin
TI  - Poincaré series of filtration associated with Newton diagram and topological types of singularities
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 24
EP  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/
LA  - ru
ID  - VMUMM_2015_4_a2
ER  - 
%0 Journal Article
%A G. D. Solomadin
%T Poincaré series of filtration associated with Newton diagram and topological types of singularities
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 24-28
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/
%G ru
%F VMUMM_2015_4_a2
G. D. Solomadin. Poincaré series of filtration associated with Newton diagram and topological types of singularities. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a2/

[1] Campillo A., Delgado F., Kiyek K., “Gorenstein property and symmetry for one-dimensional local Cohen–Macaulay rings”, Manuscripta math., 84:3–4 (1994), 405–423 | DOI | MR

[2] Campillo A., Delgado F., Gusein-Zade S.M., “The Alexander polynomial of a plane curve singularity via the ring of functions on it”, Duke Math. J., 117:1 (2003), 1–196 | DOI | MR

[3] Ebeling W., Gusein-Zade S.M., “Poincaré series and zeta function of the monodromy of a quasihomogeneous singularity”, Math. Res. Lett., 9 (2002), 509–513 | DOI | MR | Zbl

[4] Ebeling W., Gusein-Zade S.M., “Multi-variable Poincaré series associated with Newton diagrams”, J. Singular., 1 (2010), 60–68 | DOI | MR | Zbl

[5] Ebeling W., Gusein-Zade S.M., “On divisorial filtrations associated with Newton diagrams”, J. Singular., 3 (2011), 1–7 | DOI | MR | Zbl

[6] Ebeling W., Gusein-Zade S.M., “On a Newton filtration for functions on a curve singularity”, J. Singular., 4 (2012), 180–187 | MR | Zbl

[7] Gusein-Zade S.M., “Integrirovanie po otnosheniyu k eilerovoi kharakteristike i ego prilozheniya”, Uspekhi matem. nauk, 65:3(393) (2010), 5–42 | DOI | MR | Zbl

[8] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, v 2 t., v. 2, Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR