Simulation of flow over the ONERA M6 wing using a parallel implementation of an implicit scheme
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 65-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers some results of numerical simulation of flow around ONERA M6 profile. The solver is based on a fully implicit finite volume third order sheme for 3D Reynolds averaged Navie–Stockes equations with the Edwards modification of the Spalart–Allmaras turbulence model. The scalability of the parallel solver is analyzed. The numerical results are compared with experimental data and with the results obtained using an explicit scheme.
@article{VMUMM_2015_4_a12,
     author = {V. E. Borisov},
     title = {Simulation of flow over the {ONERA} {M6} wing using a parallel implementation of an implicit scheme},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--68},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a12/}
}
TY  - JOUR
AU  - V. E. Borisov
TI  - Simulation of flow over the ONERA M6 wing using a parallel implementation of an implicit scheme
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 65
EP  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a12/
LA  - ru
ID  - VMUMM_2015_4_a12
ER  - 
%0 Journal Article
%A V. E. Borisov
%T Simulation of flow over the ONERA M6 wing using a parallel implementation of an implicit scheme
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 65-68
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a12/
%G ru
%F VMUMM_2015_4_a12
V. E. Borisov. Simulation of flow over the ONERA M6 wing using a parallel implementation of an implicit scheme. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 65-68. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a12/

[1] Yoon S., Jameson A., “Lower-upper symmetric Gauss–Seidel method for the Euler and Navier–Stokes equations”, AIAA Journal, 26:9 (1988), 1025–1026 | DOI

[2] Shu C.W., “High order weighted essentially non-oscillatory schemes for convection dominated problems”, SIAM Rev., 51:1 (2009), 82–126 | DOI | MR | Zbl

[3] Spalart P.R., Allmaras S.R., A one-equations turbulence model for aerodynamics flows, AIAA Paper 92–0439, 1992

[4] Edwards J.R., Chandra S., “Comparison of eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields”, AIAA Journal, 34:4 (1996), 756–763 | DOI

[5] Schmitt V., Charpin F., Pressure distributions on the ONERA M6 wing at transonic Mach numbers, experimental data base for computer program assessment, Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, May 1979

[6] Luo H., Sharov D., Baum J.D., Lohner R., Parallel unstructured grid GMRES+LU–SGS method for turbulent flows, AIAA-2003-0273, 2003

[7] Li D., Men'shov I., Nakamura Y., “Detached-eddy simulation of three airfoils with different stall onset mechanisms”, J. Aircraft., 43:4 (2006), 1014–1021 | DOI

[8] Jameson A., Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, AIAA Paper 91–1596, 1991