Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 13-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A 2-parameter family of Hamiltonian systems $\mathcal{H}_{\omega,\varepsilon}$ with two degrees of freedom is studied, where the system $\mathcal{H}_{\omega,0}$ describes the Kepler problem in rotating axes with angular frequence $\omega$, the system $\mathcal{H}_{1,1}$ describes the Hill problem, i.e. a “limiting” motion of the Moon in the planar three body problem “Sun–Earth–Moon” with the masses $m_1\gg m_2>m_3=0$. Using the averaging method on a submanifold, we prove the existence of $\omega_0>0$ and a smooth family of $2\pi$-periodic solutions $\gamma_{\omega,\varepsilon}(t)= (\mathbf{q}_{\omega,\varepsilon}(t),\mathbf{p}_{\omega,\varepsilon}(t))$ to the system $\mathcal{H}_{\omega,\varepsilon}$, $|\varepsilon|\le1$, $|\omega|\le\omega_0$, such that $\gamma_{\omega,0}$ are cirlular solutions, $\gamma_{\omega,\varepsilon}=\gamma_{\omega,0}+O(\omega^2\varepsilon)$, and the “rescaled” motions $\tilde\gamma_{\omega,\varepsilon}(\tilde t):= (\omega^{2/3}\mathbf{q}_{\omega,\varepsilon}(\tilde t/\omega),\omega^{-1/3}\mathbf{p}_{\omega,\varepsilon}(\tilde t/\omega))$ for $0|\omega|\le\omega_0$ and $\varepsilon=1$ form two families of Hill solutions, i.e., the initial segments of the known families $f$ and $g_+$ (with a reverse and direct directions of motion) of $2\pi\omega$-periodic solutions of the Hill problem $\mathcal{H}_{1,1}$. Using averaging, we prove that the sum of the multipliers of the Hill solution $\tilde\gamma_{\omega,1}$ has the form $\mathrm{Tr}(\tilde\gamma_{\omega,1})=4-(2\pi\omega)^2+(2\pi\omega)^3/(4\pi)+O(\omega^4)$. The results are developed and extended to a class of systems including the restricted three body problem, as well as applied to planetary systems with satellites.
			
            
            
            
          
        
      @article{VMUMM_2015_4_a1,
     author = {E. A. Kudryavtseva},
     title = {Multipliers of periodic {Hill} solutions in the theory of moon motion and an averaging method},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--24},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/}
}
                      
                      
                    TY - JOUR AU - E. A. Kudryavtseva TI - Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 13 EP - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/ LA - ru ID - VMUMM_2015_4_a1 ER -
%0 Journal Article %A E. A. Kudryavtseva %T Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 13-24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/ %G ru %F VMUMM_2015_4_a1
E. A. Kudryavtseva. Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 13-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/
