@article{VMUMM_2015_4_a1,
author = {E. A. Kudryavtseva},
title = {Multipliers of periodic {Hill} solutions in the theory of moon motion and an averaging method},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {13--24},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/}
}
TY - JOUR AU - E. A. Kudryavtseva TI - Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 13 EP - 24 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/ LA - ru ID - VMUMM_2015_4_a1 ER -
E. A. Kudryavtseva. Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 13-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/
[1] Hill G.W., “Researches in the lunar theory”, Amer. J. Math., 1:1 (1878), 5–26 ; 2, 129–147; 3, 245–260 | DOI | MR
[2] Siegel C.L., Vorlesungen über Himmelsmechanik, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1956 ; Zigel K. L., Lektsii po nebesnoi mekhanike, Per. s nem., IL, M., 1959 | MR
[3] Bryuno A.D., Varin V.P., “Periodicheskie resheniya ogranichennoi zadachi trekh tel pri malom otnoshenii mass”, Prikl. matem. i mekhan., 71:6 (2007), 1049–1081 | MR
[4] Hénon M., “Numerical exploration of the restricted problem. V. Hill's case: periodic orbits and their stability”, Astron. and Astrophys., 1:2 (1969), 223–238 | Zbl
[5] Wintner A., “Zur Hillschen Theorie der Variation des Mondes”, Math. Z., 24 (1926), 259–265 | DOI | MR
[6] Brown E.W., “On the part of the parallactic inequalities in the moon's motion which is a function of the mean motions of the sun and moon”, Amer. J. Math., 14 (1892), 141–160 | DOI | MR
[7] Moulton F.R., “A class of periodic solutions of the problem of three bodies with application to the lunar theory”, Trans. Amer. Soc., 7 (1906), 537–577 | DOI | MR | Zbl
[8] Perko L.M., “Periodic solutions of the restricted problem that are analytic continuations of periodic solutions of Hill's problem for small $\mu>0$”, Celest. Mech., 30 (1983), 115–132 | DOI | MR | Zbl
[9] Bryuno A.D., Ogranichennaya zadacha trekh tel, Nauka, M., 1990 | MR
[10] Kudryavtseva E.A., “Periodicheskie dvizheniya planetnoi sistemy s dvoinymi planetami. Obobschennaya zadacha Khilla”, Vestn. Mosk. un-ta. Matem. Mekhan., 1999, no. 4, 59–61 | Zbl
[11] Kudryavtseva E.A., “Generalization of geometric Poincaré theorem for small perturbations”, Regular Chaotic Dynamics, 3:2 (1998), 46–66 | DOI | MR | Zbl
[12] Gordon W.B., “On the relation between period and energy in periodic dynamical systems”, J. Math. Mech., 19 (1969), 111–114 | MR | Zbl
[13] Weinstein A., “Lagrangian submanifolds and hamiltonian systems”, Ann. Math., 98 (1973), 377–410 | DOI | MR | Zbl
[14] Moser J., “Regularization of Kepler's problem and the averaging method on a manifold”, Communs Pure and Appl. Math., 23 (1970), 609–636 | DOI | MR | Zbl