Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 13-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A 2-parameter family of Hamiltonian systems $\mathcal{H}_{\omega,\varepsilon}$ with two degrees of freedom is studied, where the system $\mathcal{H}_{\omega,0}$ describes the Kepler problem in rotating axes with angular frequence $\omega$, the system $\mathcal{H}_{1,1}$ describes the Hill problem, i.e. a “limiting” motion of the Moon in the planar three body problem “Sun–Earth–Moon” with the masses $m_1\gg m_2>m_3=0$. Using the averaging method on a submanifold, we prove the existence of $\omega_0>0$ and a smooth family of $2\pi$-periodic solutions $\gamma_{\omega,\varepsilon}(t)= (\mathbf{q}_{\omega,\varepsilon}(t),\mathbf{p}_{\omega,\varepsilon}(t))$ to the system $\mathcal{H}_{\omega,\varepsilon}$, $|\varepsilon|\le1$, $|\omega|\le\omega_0$, such that $\gamma_{\omega,0}$ are cirlular solutions, $\gamma_{\omega,\varepsilon}=\gamma_{\omega,0}+O(\omega^2\varepsilon)$, and the “rescaled” motions $\tilde\gamma_{\omega,\varepsilon}(\tilde t):= (\omega^{2/3}\mathbf{q}_{\omega,\varepsilon}(\tilde t/\omega),\omega^{-1/3}\mathbf{p}_{\omega,\varepsilon}(\tilde t/\omega))$ for $0<|\omega|\le\omega_0$ and $\varepsilon=1$ form two families of Hill solutions, i.e., the initial segments of the known families $f$ and $g_+$ (with a reverse and direct directions of motion) of $2\pi\omega$-periodic solutions of the Hill problem $\mathcal{H}_{1,1}$. Using averaging, we prove that the sum of the multipliers of the Hill solution $\tilde\gamma_{\omega,1}$ has the form $\mathrm{Tr}(\tilde\gamma_{\omega,1})=4-(2\pi\omega)^2+(2\pi\omega)^3/(4\pi)+O(\omega^4)$. The results are developed and extended to a class of systems including the restricted three body problem, as well as applied to planetary systems with satellites.
@article{VMUMM_2015_4_a1,
     author = {E. A. Kudryavtseva},
     title = {Multipliers of periodic {Hill} solutions in the theory of moon motion and an averaging method},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--24},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 13
EP  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/
LA  - ru
ID  - VMUMM_2015_4_a1
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 13-24
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/
%G ru
%F VMUMM_2015_4_a1
E. A. Kudryavtseva. Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 13-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a1/

[1] Hill G.W., “Researches in the lunar theory”, Amer. J. Math., 1:1 (1878), 5–26 ; 2, 129–147; 3, 245–260 | DOI | MR

[2] Siegel C.L., Vorlesungen über Himmelsmechanik, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1956 ; Zigel K. L., Lektsii po nebesnoi mekhanike, Per. s nem., IL, M., 1959 | MR

[3] Bryuno A.D., Varin V.P., “Periodicheskie resheniya ogranichennoi zadachi trekh tel pri malom otnoshenii mass”, Prikl. matem. i mekhan., 71:6 (2007), 1049–1081 | MR

[4] Hénon M., “Numerical exploration of the restricted problem. V. Hill's case: periodic orbits and their stability”, Astron. and Astrophys., 1:2 (1969), 223–238 | Zbl

[5] Wintner A., “Zur Hillschen Theorie der Variation des Mondes”, Math. Z., 24 (1926), 259–265 | DOI | MR

[6] Brown E.W., “On the part of the parallactic inequalities in the moon's motion which is a function of the mean motions of the sun and moon”, Amer. J. Math., 14 (1892), 141–160 | DOI | MR

[7] Moulton F.R., “A class of periodic solutions of the problem of three bodies with application to the lunar theory”, Trans. Amer. Soc., 7 (1906), 537–577 | DOI | MR | Zbl

[8] Perko L.M., “Periodic solutions of the restricted problem that are analytic continuations of periodic solutions of Hill's problem for small $\mu>0$”, Celest. Mech., 30 (1983), 115–132 | DOI | MR | Zbl

[9] Bryuno A.D., Ogranichennaya zadacha trekh tel, Nauka, M., 1990 | MR

[10] Kudryavtseva E.A., “Periodicheskie dvizheniya planetnoi sistemy s dvoinymi planetami. Obobschennaya zadacha Khilla”, Vestn. Mosk. un-ta. Matem. Mekhan., 1999, no. 4, 59–61 | Zbl

[11] Kudryavtseva E.A., “Generalization of geometric Poincaré theorem for small perturbations”, Regular Chaotic Dynamics, 3:2 (1998), 46–66 | DOI | MR | Zbl

[12] Gordon W.B., “On the relation between period and energy in periodic dynamical systems”, J. Math. Mech., 19 (1969), 111–114 | MR | Zbl

[13] Weinstein A., “Lagrangian submanifolds and hamiltonian systems”, Ann. Math., 98 (1973), 377–410 | DOI | MR | Zbl

[14] Moser J., “Regularization of Kepler's problem and the averaging method on a manifold”, Communs Pure and Appl. Math., 23 (1970), 609–636 | DOI | MR | Zbl