Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 3-13
Cet article a éte moissonné depuis la source Math-Net.Ru
New classes of functionals are proposed for an optimal stopping problem for a functional of a symmetric random walk and its maximum. For one class the optimal moment in a finite time interval is the beginning of this interval and for another one this is its end. These classes generalize those known previously. A proof of the optimality of the indicated moments is based on combinatorial analysis of random walk trajectories.
@article{VMUMM_2015_4_a0,
author = {A. L. Vorob'ev},
title = {Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--13},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/}
}
TY - JOUR AU - A. L. Vorob'ev TI - Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 3 EP - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/ LA - ru ID - VMUMM_2015_4_a0 ER -
%0 Journal Article %A A. L. Vorob'ev %T Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 3-13 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/ %G ru %F VMUMM_2015_4_a0
A. L. Vorob'ev. Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/
[1] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, Fazis, M., 1998
[2] Shiryaev A.N., Xu Z., Zhou X.Y., “Thou shalt buy and hold”, Quantitative Finance, 57:8 (2008), 765–776 | DOI | MR
[3] Allaart P.C., “A general “bang-bang” principle for predicting the maximum of a random walk”, J. Appl. Probab., 47:4 (2010), 1072–1083 | DOI | MR | Zbl