Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New classes of functionals are proposed for an optimal stopping problem for a functional of a symmetric random walk and its maximum. For one class the optimal moment in a finite time interval is the beginning of this interval and for another one this is its end. These classes generalize those known previously. A proof of the optimality of the indicated moments is based on combinatorial analysis of random walk trajectories.
@article{VMUMM_2015_4_a0,
     author = {A. L. Vorob'ev},
     title = {Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--13},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/}
}
TY  - JOUR
AU  - A. L. Vorob'ev
TI  - Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/
LA  - ru
ID  - VMUMM_2015_4_a0
ER  - 
%0 Journal Article
%A A. L. Vorob'ev
%T Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-13
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/
%G ru
%F VMUMM_2015_4_a0
A. L. Vorob'ev. Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/

[1] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, Fazis, M., 1998

[2] Shiryaev A.N., Xu Z., Zhou X.Y., “Thou shalt buy and hold”, Quantitative Finance, 57:8 (2008), 765–776 | DOI | MR

[3] Allaart P.C., “A general “bang-bang” principle for predicting the maximum of a random walk”, J. Appl. Probab., 47:4 (2010), 1072–1083 | DOI | MR | Zbl