Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

New classes of functionals are proposed for an optimal stopping problem for a functional of a symmetric random walk and its maximum. For one class the optimal moment in a finite time interval is the beginning of this interval and for another one this is its end. These classes generalize those known previously. A proof of the optimality of the indicated moments is based on combinatorial analysis of random walk trajectories.
@article{VMUMM_2015_4_a0,
     author = {A. L. Vorob'ev},
     title = {Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/}
}
TY  - JOUR
AU  - A. L. Vorob'ev
TI  - Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/
LA  - ru
ID  - VMUMM_2015_4_a0
ER  - 
%0 Journal Article
%A A. L. Vorob'ev
%T Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/
%G ru
%F VMUMM_2015_4_a0
A. L. Vorob'ev. Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2015), pp. 3-13. http://geodesic.mathdoc.fr/item/VMUMM_2015_4_a0/