Continuity of eigenvalues of the Laplace operator according to domain
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 35-39

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof of the following fact is proposed. The eigenvalues of the Laplace–Dirichlet operator are continious as functions in the corresponding space in domains satisfying uniform cone condition. The author's approach to this problem is based on a topological version of the upper (lower) limit for sequences of sets.
@article{VMUMM_2015_3_a6,
     author = {I. V. Tsylin},
     title = {Continuity of eigenvalues of the {Laplace} operator according to domain},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/}
}
TY  - JOUR
AU  - I. V. Tsylin
TI  - Continuity of eigenvalues of the Laplace operator according to domain
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 35
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/
LA  - ru
ID  - VMUMM_2015_3_a6
ER  - 
%0 Journal Article
%A I. V. Tsylin
%T Continuity of eigenvalues of the Laplace operator according to domain
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 35-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/
%G ru
%F VMUMM_2015_3_a6
I. V. Tsylin. Continuity of eigenvalues of the Laplace operator according to domain. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/