Continuity of eigenvalues of the Laplace operator according to domain
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 35-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new proof of the following fact is proposed. The eigenvalues of the Laplace–Dirichlet operator are continious as functions in the corresponding space in domains satisfying uniform cone condition. The author's approach to this problem is based on a topological version of the upper (lower) limit for sequences of sets.
@article{VMUMM_2015_3_a6,
     author = {I. V. Tsylin},
     title = {Continuity of eigenvalues of the {Laplace} operator according to domain},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/}
}
TY  - JOUR
AU  - I. V. Tsylin
TI  - Continuity of eigenvalues of the Laplace operator according to domain
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 35
EP  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/
LA  - ru
ID  - VMUMM_2015_3_a6
ER  - 
%0 Journal Article
%A I. V. Tsylin
%T Continuity of eigenvalues of the Laplace operator according to domain
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 35-39
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/
%G ru
%F VMUMM_2015_3_a6
I. V. Tsylin. Continuity of eigenvalues of the Laplace operator according to domain. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/

[1] Agmon S., Lectures on elliptic boundary value problems, Van Nostrand, N.Y., 1965 | MR | Zbl

[2] Chenais D., “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl., 52 (1975), 189–219 | DOI | MR | Zbl

[3] Mosco U., “Approximation of the solutions of some variational inequalities”, Ann. Scuola Normale Sup. (Pisa), 21 (1967), 373–394 | MR | Zbl

[4] Taylor M., Partial differential equations, v. 1, Basic Theory, 2nd ed., Springer, N.Y.–Dordrecht–Heidelberg–L., 2011 | MR

[5] Henrot A., Pierre M., Variation et optimisation de formes, Springer-Verlag, Berlin–Heidelberg, 2005 | MR | Zbl

[6] Henrot A., Extremum problems for eigenvalues of elliptic operators, Birkhäuser-Verlag, Basel–Boston–Berlin, 2006 | MR | Zbl

[7] Bucur D., Buttazzo G., Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and Their Applications, 65, Birkhäuser, Basel–Boston, 2005 | MR | Zbl