@article{VMUMM_2015_3_a6,
author = {I. V. Tsylin},
title = {Continuity of eigenvalues of the {Laplace} operator according to domain},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--39},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/}
}
I. V. Tsylin. Continuity of eigenvalues of the Laplace operator according to domain. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a6/
[1] Agmon S., Lectures on elliptic boundary value problems, Van Nostrand, N.Y., 1965 | MR | Zbl
[2] Chenais D., “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl., 52 (1975), 189–219 | DOI | MR | Zbl
[3] Mosco U., “Approximation of the solutions of some variational inequalities”, Ann. Scuola Normale Sup. (Pisa), 21 (1967), 373–394 | MR | Zbl
[4] Taylor M., Partial differential equations, v. 1, Basic Theory, 2nd ed., Springer, N.Y.–Dordrecht–Heidelberg–L., 2011 | MR
[5] Henrot A., Pierre M., Variation et optimisation de formes, Springer-Verlag, Berlin–Heidelberg, 2005 | MR | Zbl
[6] Henrot A., Extremum problems for eigenvalues of elliptic operators, Birkhäuser-Verlag, Basel–Boston–Berlin, 2006 | MR | Zbl
[7] Bucur D., Buttazzo G., Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and Their Applications, 65, Birkhäuser, Basel–Boston, 2005 | MR | Zbl