The $n$-antiproximinal sets
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 29-34

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $n$-antiproximinal set in a Banach space is defined. The existence of convex closed $n$-antiproximinal sets in the spaces $C$ and $L_1$ is studied.
@article{VMUMM_2015_3_a5,
     author = {B. B. Bednov},
     title = {The $n$-antiproximinal sets},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--34},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a5/}
}
TY  - JOUR
AU  - B. B. Bednov
TI  - The $n$-antiproximinal sets
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 29
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a5/
LA  - ru
ID  - VMUMM_2015_3_a5
ER  - 
%0 Journal Article
%A B. B. Bednov
%T The $n$-antiproximinal sets
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 29-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a5/
%G ru
%F VMUMM_2015_3_a5
B. B. Bednov. The $n$-antiproximinal sets. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 29-34. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a5/