@article{VMUMM_2015_3_a3,
author = {O. A. Zagryadskii and D. A. Fedoseev},
title = {The global and local realizability of {Bertrand} {Riemannian} manifolds as surfaces of revolution},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {18--24},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/}
}
TY - JOUR AU - O. A. Zagryadskii AU - D. A. Fedoseev TI - The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 18 EP - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/ LA - ru ID - VMUMM_2015_3_a3 ER -
%0 Journal Article %A O. A. Zagryadskii %A D. A. Fedoseev %T The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 18-24 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/ %G ru %F VMUMM_2015_3_a3
O. A. Zagryadskii; D. A. Fedoseev. The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/
[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl
[2] Darboux G., “Sur un probléme de mécanique”: Despeyrous T., Cours de mécanique, Note XIV, v. 2, A. Herman, P., 1886, 461–466
[3] Fomenko A.T., Symplectic geometry, 2nd revised ed., Gordon and Breach, N.Y., 1995 | MR | Zbl
[4] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl
[5] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–35 | MR