The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of possibility to represent two-dimensional Bertrand's Riemannian manifolds being a configuration space of the inverse problem of dynamics as surfaces of revolution embedded into $\mathbb{R}^3$ is studied and solved as well as the problem of local realizability (near a longitude) of the manifolds under consideration.
			
            
            
            
          
        
      @article{VMUMM_2015_3_a3,
     author = {O. A. Zagryadskii and D. A. Fedoseev},
     title = {The global and local realizability of {Bertrand} {Riemannian} manifolds as surfaces of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--24},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/}
}
                      
                      
                    TY - JOUR AU - O. A. Zagryadskii AU - D. A. Fedoseev TI - The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 18 EP - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/ LA - ru ID - VMUMM_2015_3_a3 ER -
%0 Journal Article %A O. A. Zagryadskii %A D. A. Fedoseev %T The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 18-24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/ %G ru %F VMUMM_2015_3_a3
O. A. Zagryadskii; D. A. Fedoseev. The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/
