The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of possibility to represent two-dimensional Bertrand's Riemannian manifolds being a configuration space of the inverse problem of dynamics as surfaces of revolution embedded into $\mathbb{R}^3$ is studied and solved as well as the problem of local realizability (near a longitude) of the manifolds under consideration.
@article{VMUMM_2015_3_a3,
     author = {O. A. Zagryadskii and D. A. Fedoseev},
     title = {The global and local realizability of {Bertrand} {Riemannian} manifolds as surfaces of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--24},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/}
}
TY  - JOUR
AU  - O. A. Zagryadskii
AU  - D. A. Fedoseev
TI  - The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 18
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/
LA  - ru
ID  - VMUMM_2015_3_a3
ER  - 
%0 Journal Article
%A O. A. Zagryadskii
%A D. A. Fedoseev
%T The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 18-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/
%G ru
%F VMUMM_2015_3_a3
O. A. Zagryadskii; D. A. Fedoseev. The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/