The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of possibility to represent two-dimensional Bertrand's Riemannian manifolds being a configuration space of the inverse problem of dynamics as surfaces of revolution embedded into $\mathbb{R}^3$ is studied and solved as well as the problem of local realizability (near a longitude) of the manifolds under consideration.
@article{VMUMM_2015_3_a3,
     author = {O. A. Zagryadskii and D. A. Fedoseev},
     title = {The global and local realizability of {Bertrand} {Riemannian} manifolds as surfaces of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--24},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/}
}
TY  - JOUR
AU  - O. A. Zagryadskii
AU  - D. A. Fedoseev
TI  - The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 18
EP  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/
LA  - ru
ID  - VMUMM_2015_3_a3
ER  - 
%0 Journal Article
%A O. A. Zagryadskii
%A D. A. Fedoseev
%T The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 18-24
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/
%G ru
%F VMUMM_2015_3_a3
O. A. Zagryadskii; D. A. Fedoseev. The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 18-24. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a3/

[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl

[2] Darboux G., “Sur un probléme de mécanique”: Despeyrous T., Cours de mécanique, Note XIV, v. 2, A. Herman, P., 1886, 461–466

[3] Fomenko A.T., Symplectic geometry, 2nd revised ed., Gordon and Breach, N.Y., 1995 | MR | Zbl

[4] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[5] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25:4 (1991), 23–35 | MR