Comparison of methods to study the slab bending on multilayered foundations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 69-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytical method to solve the bending problem for an elastic slab resting on an elastic multilayered half-space is considered. This method is based on the application of integral transforms. The slab is modeled according to the Kirchhoff–Love theory of thin plates. The method is compared with a finite element method. A number of numerical results are discussed for the case when the elasticity theory equations are used to model the slab behavior and are compared with the solution obtained on the basis of the thin plate theory. A computer program was developed to specify the stress-strain state of structures considered in this paper.
@article{VMUMM_2015_3_a13,
     author = {A. S. Solodovnikov},
     title = {Comparison of methods to study the slab bending on multilayered foundations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {69--72},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a13/}
}
TY  - JOUR
AU  - A. S. Solodovnikov
TI  - Comparison of methods to study the slab bending on multilayered foundations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 69
EP  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a13/
LA  - ru
ID  - VMUMM_2015_3_a13
ER  - 
%0 Journal Article
%A A. S. Solodovnikov
%T Comparison of methods to study the slab bending on multilayered foundations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 69-72
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a13/
%G ru
%F VMUMM_2015_3_a13
A. S. Solodovnikov. Comparison of methods to study the slab bending on multilayered foundations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 69-72. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a13/

[1] Nikishin V.S., Shapiro G.S., Prostranstvennye zadachi teorii uprugosti dlya mnogosloinykh sred, Nauka, M., 1970 | MR

[2] Osipov V.I., Sheshenin S.V., Filimonov S.D., Muravleva L.V., “Zakonomernost raspredeleniya napryazhenno-deformirovannogo sostoyaniya v sloistykh gruntovykh massivakh”, Geoekologiya, 6 (1993), 27–36

[3] Sheshenin S.V., Kalinin E.V., Bujakov M.I., “Equivalent properties of rock strata: static and dynamic analysis”, Int. J. Numer. and Anal. Methods Geomech., 21 (1993), 569–579 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Nauka, M., 1995 | MR

[5] Zinkevich O., Morgan K., Konechnye elementy i approksimatsiya, Nauka, M., 1986 | MR

[6] Nikishin V.S., Chernigov A.V., “Zadachi ob izgibe tonkikh uprugikh plit s sharnirami na mnogosloinom poluprostranstve”, Povyshenie dolgovechnosti dorozhnykh konstruktsii, Tr. SOYuZDORNII, 1986, 4–20

[7] Timoshenko S.P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1975 | MR