Colength of the variety generated by a three-dimensional simple Lie algebra
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 58-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variety generated by a three-dimensional simple Lie algebra over a field of characteristic zero was studied very well. The study of this variety is continued in the paper and a formula for calculation of its colengths is presented.
@article{VMUMM_2015_3_a10,
     author = {Yu. R. Pestova},
     title = {Colength of the variety generated by a three-dimensional simple {Lie} algebra},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--61},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a10/}
}
TY  - JOUR
AU  - Yu. R. Pestova
TI  - Colength of the variety generated by a three-dimensional simple Lie algebra
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 58
EP  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a10/
LA  - ru
ID  - VMUMM_2015_3_a10
ER  - 
%0 Journal Article
%A Yu. R. Pestova
%T Colength of the variety generated by a three-dimensional simple Lie algebra
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 58-61
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a10/
%G ru
%F VMUMM_2015_3_a10
Yu. R. Pestova. Colength of the variety generated by a three-dimensional simple Lie algebra. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a10/

[1] Bakhturin Yu.A., Tozhdestva v algebrakh Li, Nauka, M., 1980 | MR

[2] Giambruno A., Zaicev M., Polynomial identities and asymptotic methods, Math. Surveys and Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[3] Mischenko S.P., “Rost mnogoobrazii algebr Li”, Uspekhi matem. nauk, 45:6(276) (1990), 25–45 | MR

[4] Razmyslov Yu.P., “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 83–113 | MR

[5] Razmyslov Yu.P., “Konechnaya baziruemost nekotorykh mnogoobrazii algebr”, Algebra i logika, 13:6 (1974), 685–693 | MR | Zbl

[6] Drenski V.S., “Predstavleniya simmetricheskoi gruppy i mnogoobraziya lineinykh algebr”, Matem. sb., 115:1(5) (1980), 98–115 | MR