New case of complete integrability of dynamics equations on a tangent fibering to a $3\mathrm{D}$ sphere
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 11-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of study of the motion equations for a dynamically symmetric 4D-rigid body placed in a certain non-conservative field of forces. The form of the field is taken from the dynamics of actual 2D- and 3D-rigid bodies interacting with the medium in the case when the system contains a non-conservative pair of forces forcing the center of mass of a body to move rectilinearly and uniformly. A new case of integrability is obtained for dynamic equations of body motion in a resisting medium filling a four-dimensional space under presence of a tracking force.
@article{VMUMM_2015_3_a1,
     author = {M. V. Shamolin},
     title = {New case of complete integrability of dynamics equations on a tangent fibering to a $3\mathrm{D}$ sphere},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--14},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a1/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - New case of complete integrability of dynamics equations on a tangent fibering to a $3\mathrm{D}$ sphere
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 11
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a1/
LA  - ru
ID  - VMUMM_2015_3_a1
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T New case of complete integrability of dynamics equations on a tangent fibering to a $3\mathrm{D}$ sphere
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 11-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a1/
%G ru
%F VMUMM_2015_3_a1
M. V. Shamolin. New case of complete integrability of dynamics equations on a tangent fibering to a $3\mathrm{D}$ sphere. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 11-14. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a1/