Disorder problem for a Brownian motion on a segment in the case of uniformly distributed moment of disorder
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the quickest detection of the disorder of a Brownian motion on a finite interval. The unknown moment of disorder is assumed to be uniformly distributed on the interval. The Bayesian and absolute criteria are used as optimality tests. The problem is reduced to a classic optimal stopping problem where the optimal stopping time may be obtained as a solution to integral equations. The existence and uniqueness of the solution of integral equations are proved analytically.
@article{VMUMM_2015_3_a0,
     author = {A. A. Socco},
     title = {Disorder problem for a {Brownian} motion on a segment in the case of uniformly distributed moment of disorder},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a0/}
}
TY  - JOUR
AU  - A. A. Socco
TI  - Disorder problem for a Brownian motion on a segment in the case of uniformly distributed moment of disorder
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a0/
LA  - ru
ID  - VMUMM_2015_3_a0
ER  - 
%0 Journal Article
%A A. A. Socco
%T Disorder problem for a Brownian motion on a segment in the case of uniformly distributed moment of disorder
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-11
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a0/
%G ru
%F VMUMM_2015_3_a0
A. A. Socco. Disorder problem for a Brownian motion on a segment in the case of uniformly distributed moment of disorder. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2015), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2015_3_a0/

[1] Carlstein E., Müller H.G., Siegmund D., Change-point problems, IMS Lect. Notes Monogr. Ser., 23, Springer, 1994 | MR

[2] Shiryaev A.N., “Quickest detection problems in the technical analysis of the financial data”, Math. Finance Bachelier Congress, Springer, P., 2000, 487–521 | MR

[3] Shiryaev A.N., Stokhasticheskii posledovatelnyi analiz: Optimalnye pravila ostanovki, 2-e izd., pererab., Nauka. Fizmatlit, M., 1976 | MR

[4] Peskir G., Shiryaev A.N., Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006 | MR | Zbl

[5] Gapeev P.V., Peskir G., “The Wiener disorder problem with finite horizon”, Stochast. Process. and Appl., 116:12 (2006), 1770–1791 | DOI | MR | Zbl

[6] Shiryaev A.N., “A remark on the quickest detection problems”, Statistics and Decisions, 22 (2004), 79–82 | DOI | MR | Zbl

[7] Liptser R.Sh., Shiryaev A.N., Statistika sluchainykh protsessov, Nauka, M., 1974 | MR

[8] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, Fazis, M., 1998; 2004

[9] Shiryaev A.N., Veroyatnostno-statisticheskie metody v teorii prinyatiya reshenii, FMOP MTsNMO, M., 2011

[10] Peskir G., “A-change-of-variable formula with local time on curves”, J. Theor. Probab., 18:3 (2005), 499–535 | DOI | MR | Zbl

[11] Yor M., “On some exponential functionals of Brownian motion”, Adv. Appl. Probab., 24 (1992), 509–531 | DOI | MR | Zbl