Spectrum of wandering rates of a nonorthogonal product of two rotations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 49-53
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that wandering rates of solutions to any autonomous four-dimensional system with the Cauchy operator performing two independent rotations with two different frequencies in two planes (forming a direct sum, but not necessarily orthogonal one) fill exactly the segment with endpoints at those frequencies.
@article{VMUMM_2015_2_a9,
author = {D. S. Burlakov},
title = {Spectrum of wandering rates of a nonorthogonal product of two rotations},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {49--53},
publisher = {mathdoc},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/}
}
TY - JOUR AU - D. S. Burlakov TI - Spectrum of wandering rates of a nonorthogonal product of two rotations JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 49 EP - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/ LA - ru ID - VMUMM_2015_2_a9 ER -
D. S. Burlakov. Spectrum of wandering rates of a nonorthogonal product of two rotations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/