Spectrum of wandering rates of a nonorthogonal product of two rotations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 49-53

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that wandering rates of solutions to any autonomous four-dimensional system with the Cauchy operator performing two independent rotations with two different frequencies in two planes (forming a direct sum, but not necessarily orthogonal one) fill exactly the segment with endpoints at those frequencies.
@article{VMUMM_2015_2_a9,
     author = {D. S. Burlakov},
     title = {Spectrum of wandering rates of a nonorthogonal product of two rotations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--53},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/}
}
TY  - JOUR
AU  - D. S. Burlakov
TI  - Spectrum of wandering rates of a nonorthogonal product of two rotations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 49
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/
LA  - ru
ID  - VMUMM_2015_2_a9
ER  - 
%0 Journal Article
%A D. S. Burlakov
%T Spectrum of wandering rates of a nonorthogonal product of two rotations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 49-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/
%G ru
%F VMUMM_2015_2_a9
D. S. Burlakov. Spectrum of wandering rates of a nonorthogonal product of two rotations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a9/