QC-norm of trigonometric polynomials of special form
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 46-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We estimate the QC norm introduced by B. S. Kashin and V. N. Temlyakov for trigonometric polynomials of special type. This result generalizes the example of K. I. Oskolkov.
@article{VMUMM_2015_2_a8,
     author = {A. O. Radomskii},
     title = {QC-norm of trigonometric polynomials of special form},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--49},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a8/}
}
TY  - JOUR
AU  - A. O. Radomskii
TI  - QC-norm of trigonometric polynomials of special form
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 46
EP  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a8/
LA  - ru
ID  - VMUMM_2015_2_a8
ER  - 
%0 Journal Article
%A A. O. Radomskii
%T QC-norm of trigonometric polynomials of special form
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 46-49
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a8/
%G ru
%F VMUMM_2015_2_a8
A. O. Radomskii. QC-norm of trigonometric polynomials of special form. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 46-49. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a8/

[1] Kashin B.S., Temlyakov V.N., “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. statei, posvyasch. semidesyatiletiyu P. L. Ulyanova, AFTs, M., 1999, 69–99

[2] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, 2-e izd., dop., AFTs, M., 1999