Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 17-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results concerning exact asymptotics for small deviation probabilities of a Wiener process in $L^p$-norm with a weight $p\ge2$ and for $L^p$-norms of trajectories of some stochastic integrals are proved in the paper.
@article{VMUMM_2015_2_a2,
     author = {V. R. Fatalov},
     title = {Weighted $L^p$, $p\ge2$, for a wiener process: {Exact} asymptoties of small deviations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {17--22},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a2/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 17
EP  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a2/
LA  - ru
ID  - VMUMM_2015_2_a2
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 17-22
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a2/
%G ru
%F VMUMM_2015_2_a2
V. R. Fatalov. Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 17-22. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a2/

[1] Nazarov A.I., “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Problemy matematicheskogo analiza, 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214

[2] Nazarov A.I., Pusev R.S., “Tochnaya asimptotika malykh uklonenii v $ L_2$-norme s vesom dlya nekotorykh gaussovskikh protsessov”, Zap. nauch. seminarov LOMI, 364, 2009, 166–199 | Zbl

[3] Pusev R.S., Asimptotika veroyatnostei malykh uklonenii gaussovskikh protsessov v gilbertovoi norme, Kand. dis., SPb., 2010

[4] Nikitin Ya.Yu., Pusev R.S., “Tochnaya asimptotika malykh uklonenii dlya ryada brounovskikh funktsionalov”, Teoriya veroyatn. i ee primen., 57:1 (2012), 98–123 | DOI

[5] Fatalov V.R., “Metod Laplasa dlya malykh uklonenii gaussovskikh protsessov tipa vinerovskogo”, Matem. sb., 196:4 (2005), 135–160 | DOI | Zbl

[6] Fatalov V.R., “Tochnye asimptotiki malykh uklonenii dlya statsionarnogo protsessa Ornshteina–Ulenbeka i nekotorykh gaussovskikh diffuzii v $ L^p$-norme, $ 2 \leq p \leq \infty $”, Probl. peredachi inform., 44:2 (2008), 75–95 | MR

[7] Fatalov V.R., “Malye ukloneniya dlya dvukh klassov gaussovskikh statsionarnykh protsessov i $ L^p$-funktsionalov, $ 0 p \leq \infty $”, Probl. peredachi inform., 46:1 (2010), 68–93 | MR | Zbl

[8] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR

[9] Li W.V., “Small ball probabilities for Gaussian Markov processes under the $L^p$-norm”, Stoch. Proc. Appl., 92:1 (2001), 87–102 | DOI | MR | Zbl

[10] Lifshits M.A., Linde W., “Approximation and entropy numbers of Volterra operators with applications to Brownian motion”, Mem. AMS, 745, 2002, 1–87 | MR

[11] Lifshits M.A., Lectures on Gaussian processes, Springer, Heidelberg, 2012 | MR | Zbl

[12] Novikov A.A., “O malykh ukloneniyakh gaussovskikh protsessov”, Matem. zametki, 29:2 (1981), 291–301 | MR | Zbl

[13] Lifshits M.A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995

[14] Fatalov V.R., “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, Uspekhi matem. nauk, 58:4 (2003), 89–134 | DOI | MR | Zbl

[15] Gikhman I.I., Skorokhod A.V., Teoriya sluchainykh protsessov, v. 3, Nauka, M., 1975 | MR