One-dimensional flow of a fluid through a plane porous layer under finite strains
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 62-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of one-dimensional transversal time-independent flow of compressible fluid through the plane deformable porous layer with finite thickness made of an incompressible material in the case of finite strains with influence of Darcy's interaction and frontal head pressure forces is formulated and numerically solved.
@article{VMUMM_2015_2_a13,
     author = {I. O. Faskheev},
     title = {One-dimensional flow of a fluid through a plane porous layer under finite strains},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--65},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a13/}
}
TY  - JOUR
AU  - I. O. Faskheev
TI  - One-dimensional flow of a fluid through a plane porous layer under finite strains
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 62
EP  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a13/
LA  - ru
ID  - VMUMM_2015_2_a13
ER  - 
%0 Journal Article
%A I. O. Faskheev
%T One-dimensional flow of a fluid through a plane porous layer under finite strains
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 62-65
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a13/
%G ru
%F VMUMM_2015_2_a13
I. O. Faskheev. One-dimensional flow of a fluid through a plane porous layer under finite strains. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a13/

[1] Biot M.A., “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[2] Kollinz R., Techenie zhidkostei cherez poristye materialy, Mir, M., 1964

[3] Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A., Mekhanika nasyschennykh poristykh sred, Nedra, M., 1970

[4] Nigmatulin R.I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR

[5] Brovko G.L., “Model neodnorodnoi zhidkogazonapolnennoi sredy s deformiruemym tverdym karkasom”, Vestn. Mosk. un-ta. Matem. Mekhan., 1998, no. 5, 45–52 | MR | Zbl

[6] Brovko G.L., “Printsip materialnoi nezavisimosti ot sistemy otscheta i struktury interaktivnykh vzaimodeistvii v geterogennykh sredakh”, Izv. TulGU. Ser. Matem. Mekhan. Inform., 11:2 (2005), 21–29

[7] Brovko G.L., “Modeli i zadachi dlya napolnennykh poristykh sred”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 6, 33–43 | MR

[8] Faskheev I.O., “Odnomernoe techenie zhidkosti skvoz poristyi karkas s uchetom interaktivnykh sil tipa Darsi i frontalnogo napora”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 6, 62–66

[9] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992