@article{VMUMM_2015_2_a13,
author = {I. O. Faskheev},
title = {One-dimensional flow of a fluid through a plane porous layer under finite strains},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {62--65},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a13/}
}
I. O. Faskheev. One-dimensional flow of a fluid through a plane porous layer under finite strains. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a13/
[1] Biot M.A., “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33:4 (1962), 1482–1498 | DOI | MR | Zbl
[2] Kollinz R., Techenie zhidkostei cherez poristye materialy, Mir, M., 1964
[3] Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A., Mekhanika nasyschennykh poristykh sred, Nedra, M., 1970
[4] Nigmatulin R.I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR
[5] Brovko G.L., “Model neodnorodnoi zhidkogazonapolnennoi sredy s deformiruemym tverdym karkasom”, Vestn. Mosk. un-ta. Matem. Mekhan., 1998, no. 5, 45–52 | MR | Zbl
[6] Brovko G.L., “Printsip materialnoi nezavisimosti ot sistemy otscheta i struktury interaktivnykh vzaimodeistvii v geterogennykh sredakh”, Izv. TulGU. Ser. Matem. Mekhan. Inform., 11:2 (2005), 21–29
[7] Brovko G.L., “Modeli i zadachi dlya napolnennykh poristykh sred”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 6, 33–43 | MR
[8] Faskheev I.O., “Odnomernoe techenie zhidkosti skvoz poristyi karkas s uchetom interaktivnykh sil tipa Darsi i frontalnogo napora”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 6, 62–66
[9] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992