Estimate of an arithmetic sum with multiplicative coefficients
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 59-62

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $\mathcal{F}$ consisting of all multiplicative functions $f$ satisfying the inequality $|f(p)|\leq A$ for some constant $A\geq 1$ and all primes $p$ and $\sum_{n=1}^N |f(n)|^2\leq A^2N$ is considered. It is proved that for any real irrational algebraic $\alpha$ and for all natural numbers $k$ and $N$ the following estimate holds uniformly over all multiplicative functions $f$ from $\mathcal{F}$: $$ S(\alpha)=\sum_{n=1}^Nf(n)\rho(n\alpha)\ll_A\frac{N}{\ln N}, $$ where $\rho(t)=0,5-\{t\}.$
@article{VMUMM_2015_2_a12,
     author = {M. Sh. Shikhsadilov},
     title = {Estimate of an arithmetic sum with multiplicative coefficients},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--62},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a12/}
}
TY  - JOUR
AU  - M. Sh. Shikhsadilov
TI  - Estimate of an arithmetic sum with multiplicative coefficients
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 59
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a12/
LA  - ru
ID  - VMUMM_2015_2_a12
ER  - 
%0 Journal Article
%A M. Sh. Shikhsadilov
%T Estimate of an arithmetic sum with multiplicative coefficients
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 59-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a12/
%G ru
%F VMUMM_2015_2_a12
M. Sh. Shikhsadilov. Estimate of an arithmetic sum with multiplicative coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 59-62. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a12/