Estimate of an arithmetic sum with multiplicative coefficients
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 59-62
Cet article a éte moissonné depuis la source Math-Net.Ru
The class $\mathcal{F}$ consisting of all multiplicative functions $f$ satisfying the inequality $|f(p)|\leq A$ for some constant $A\geq 1$ and all primes $p$ and $\sum_{n=1}^N |f(n)|^2\leq A^2N$ is considered. It is proved that for any real irrational algebraic $\alpha$ and for all natural numbers $k$ and $N$ the following estimate holds uniformly over all multiplicative functions $f$ from $\mathcal{F}$: $$ S(\alpha)=\sum_{n=1}^Nf(n)\rho(n\alpha)\ll_A\frac{N}{\ln N}, $$ where $\rho(t)=0,5-\{t\}.$
@article{VMUMM_2015_2_a12,
author = {M. Sh. Shikhsadilov},
title = {Estimate of an arithmetic sum with multiplicative coefficients},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {59--62},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a12/}
}
M. Sh. Shikhsadilov. Estimate of an arithmetic sum with multiplicative coefficients. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 59-62. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a12/
[1] Daboussi H., Delange H., “Quelques propriétès des fonctions multiplicatives de module au plus égal á $1$”, C.r. Acad. sci. Paris. Ser. A, 278 (1974), 657–660 | MR | Zbl
[2] Daboussi H., “Fonctions multiplicatives presque périodiques $B.$ D'après un travail commun avec Hubert Delange”, Journées Arithmétique de Bordeaux, Conf. Univ. Bordeaux (1974), Astérisque, 24–25, 1975, 321–324 | MR | Zbl
[3] Montgomery H.L., Vaughan R.C., “Exponential sums with multiplicative coefficients”, Invent. math., 43 (1977), 69–82 | DOI | MR | Zbl