The Dirchlet $L$-function does not vanish for $s=1$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 57-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new proof of Dirichlet's theorem that a Dirichlet $L$-series for a prime modulo $q\equiv 3\pmod 4$ with a real character does not vanish is given.
@article{VMUMM_2015_2_a11,
     author = {V. N. Chubarikov},
     title = {The {Dirchlet} $L$-function does not vanish for $s=1$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--59},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a11/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - The Dirchlet $L$-function does not vanish for $s=1$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 57
EP  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a11/
LA  - ru
ID  - VMUMM_2015_2_a11
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T The Dirchlet $L$-function does not vanish for $s=1$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 57-59
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a11/
%G ru
%F VMUMM_2015_2_a11
V. N. Chubarikov. The Dirchlet $L$-function does not vanish for $s=1$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 57-59. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a11/

[1] Davenport H., Multiplicative number theory, Graduate Texts in Mathematics, 74, 2nd ed., Springer-Verlag, N.Y.–Heidelberg–Berlin, 1980 | DOI | MR | Zbl

[2] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR

[3] Arkhipov G.I., Sadovnichii V.A., Chubarikov V.N., Lektsii po matematicheskomu analizu, Drofa, M., 2008