Minimal linear Morse functions on the orbits in Lie algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 9-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem stating that all Morse height functions are perfect on regular orbits of the adjoint action of compact semisimple Lie groups is proved. In the case of arbitrary linear representation of a compact Lie group we prove that all height functions are Bott functions on orbits of representation. The case of $\mathrm{SO}_{4}$ is studied in more detail.
@article{VMUMM_2015_2_a1,
     author = {V. A. Shmarov},
     title = {Minimal linear {Morse} functions on the orbits in {Lie} algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {9--16},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a1/}
}
TY  - JOUR
AU  - V. A. Shmarov
TI  - Minimal linear Morse functions on the orbits in Lie algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 9
EP  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a1/
LA  - ru
ID  - VMUMM_2015_2_a1
ER  - 
%0 Journal Article
%A V. A. Shmarov
%T Minimal linear Morse functions on the orbits in Lie algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 9-16
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a1/
%G ru
%F VMUMM_2015_2_a1
V. A. Shmarov. Minimal linear Morse functions on the orbits in Lie algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 9-16. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a1/

[1] Fomenko A.T., Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, Izhev. respubl. tip., Izhevsk, 1999

[2] Subhash B., Linear Morse functions, Indian institute of technology, Bombay, 2009

[3] Bott R., Samelson H., “Application of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029 | DOI | MR

[4] Matveev S.V., Fomenko A.T., Sharko V.V., “Kruglye funktsii Morsa i izoenergeticheskie poverkhnosti integriruemykh gamiltonovykh sistem”, Matem. sb., 135 (1988), 325–345

[5] Fomenko A.T., Symplectic geometry. Methods and applications, Gordon and Breach, N.Y., 1995 | MR

[6] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199 (2008), 3–96 | DOI | Zbl

[7] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[8] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN, 446 (2012), 615–617 | Zbl

[9] Vinberg E.B., Onischik A.L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[10] Humphreys J.E., Introduction to Lie algebras and representation theory, Springer-Verlag, N.Y., 1978 | MR | Zbl

[11] Shmarov V.A., “Morsovskie lineinye funktsionaly na orbitakh prisoedinennogo deistviya prostykh grupp Li”, Vestn. Mosk. un-ta. Matem. Mekhan., 2012, no. 4, 3–8 | MR | Zbl

[12] Borel A., “Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts”, Ann. Math., 57 (1953), 115–207 | DOI | MR | Zbl

[13] Coxeter H.S.M., “The product of the generators of a finite group generated by reflexions”, Duke Math. J., 18 (1951), 765–782 | DOI | MR | Zbl