Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

We study complex Hamiltonian systems on $\mathbb C\times(\mathbb C\setminus\{0\})$ with standard symplectic structure $\omega_{\mathbb C}=dz\wedge dw$ and Hamiltonian function $f=a z^2+b/w+P_n(w)$, where $P_n(w)$ is a polynomial of degree $n$, the numbers $a,b\in\mathbb C$ and $ab\ne0$. For some natural classes of these $\mathbb C$-Hamiltonian systems we study an equivalence relation in the Hamiltonian sense and determine the topology of the corresponding quotient space. We also prove that for $\mathbb C$-Hamiltonian systems with Hamiltonian function $f=a z^2+b/w+P_n(w)$, where $a b\ne0,n\ge0$, the bifurcation complex is homeomorphic to a two-dimensional plane.
@article{VMUMM_2015_2_a0,
     author = {N. N. Martynchuk},
     title = {Complex {Hamiltonian} systems on $\mathbb{C^2}$ with {Hamiltonian} function of low {Laurent} degree},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/}
}
TY  - JOUR
AU  - N. N. Martynchuk
TI  - Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/
LA  - ru
ID  - VMUMM_2015_2_a0
ER  - 
%0 Journal Article
%A N. N. Martynchuk
%T Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/
%G ru
%F VMUMM_2015_2_a0
N. N. Martynchuk. Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/