Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study complex Hamiltonian systems on $\mathbb C\times(\mathbb C\setminus\{0\})$ with standard symplectic structure $\omega_{\mathbb C}=dz\wedge dw$ and Hamiltonian function $f=a z^2+b/w+P_n(w)$, where $P_n(w)$ is a polynomial of degree $n$, the numbers $a,b\in\mathbb C$ and $ab\ne0$. For some natural classes of these $\mathbb C$-Hamiltonian systems we study an equivalence relation in the Hamiltonian sense and determine the topology of the corresponding quotient space. We also prove that for $\mathbb C$-Hamiltonian systems with Hamiltonian function $f=a z^2+b/w+P_n(w)$, where $a b\ne0,n\ge0$, the bifurcation complex is homeomorphic to a two-dimensional plane.
@article{VMUMM_2015_2_a0,
     author = {N. N. Martynchuk},
     title = {Complex {Hamiltonian} systems on $\mathbb{C^2}$ with {Hamiltonian} function of low {Laurent} degree},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--9},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/}
}
TY  - JOUR
AU  - N. N. Martynchuk
TI  - Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 3
EP  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/
LA  - ru
ID  - VMUMM_2015_2_a0
ER  - 
%0 Journal Article
%A N. N. Martynchuk
%T Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 3-9
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/
%G ru
%F VMUMM_2015_2_a0
N. N. Martynchuk. Complex Hamiltonian systems on $\mathbb{C^2}$ with Hamiltonian function of low Laurent degree. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/VMUMM_2015_2_a0/

[1] Lepskii T.A., “Nepolnye integriruemye gamiltonovy sistemy s kompleksnym polinomialnym gamiltonianom maloi stepeni”, Matem. sb., 202:10 (2010), 109–136 | DOI | MR

[2] Kudryavtseva E.A., Lepskii T.A., “Topologiya lagranzhevykh sloenii integriruemykh sistem s giperellipticheskim gamiltonianom”, Matem. sb., 202:3 (2010), 69–106 | DOI

[3] Kudryavtseva E.A., Lepskii T.A., “Topologiya sloeniya i teorema Liuvillya dlya integriruemykh sistem s nepolnymi potokami”, Tr. Seminara po vektornomu i tenzornomu analizu, 28, 2011, 106–149

[4] Kudryavtseva E.A., Lepskii T.A., “Integriruemye gamiltonovy sistemy s nepolnymi potokami i mnogougolniki Nyutona”, Sovremennye problemy matematiki i mekhaniki, 6:3 (2011), 42–55

[5] Kudryavtseva E.A., “Analog teoremy Liuvillya dlya integriruemykh gamiltonovykh sistem s nepolnymi potokami”, Dokl. RAN, 445:4 (2012), 383–385 | MR | Zbl

[6] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, RKhD, Izhevsk, 1999 | MR

[7] Bolsinov A.V., Fomenko A.T., Integrable geodesic flows on two-dimensional surfaces, Kluwer Academic Plenum Publishers, N.Y.–Boston–Dordrecht–L.–M., 2000 | MR | Zbl

[8] Fomenko A.T., Konyaev A.Yu., “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topol. and its Appl., 159 (2012), 1964–1975 | DOI | MR | Zbl

[9] Fomenko A.T., “Topologicheskii invariant, grubo klassifitsiruyuschii integriruemye strogo nevyrozhdennye gamiltoniany na chetyrekhmernykh simplekticheskikh mnogoobraziyakh”, Funkts. analiz i ego pril., 25 (1991), 23–35

[10] Kudryavtseva E.A., Fomenko A.T., “Gruppy simmetrii pravilnykh funktsii Morsa na poverkhnostyakh”, Dokl. RAN, 446:6 (2012), 615–617 | Zbl

[11] Kudryavtseva E.A., Nikonov I.M., Fomenko A.T., “Maksimalno simmetrichnye kletochnye razbieniya poverkhnostei i ikh nakrytiya”, Matem. sb., 199:9 (2008), 3–96 | DOI | MR | Zbl