The sufficient condition of sign conversion for matrices over a finite field
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 51-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sign conversion for matrices over finite fields is studied. The sufficient condition for sign conversion between permanent and determinant functions is obtained for matrices with large number of nonzero elements.
@article{VMUMM_2015_1_a8,
     author = {M. V. Budrevich},
     title = {The sufficient condition of sign conversion for matrices over a finite field},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--54},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a8/}
}
TY  - JOUR
AU  - M. V. Budrevich
TI  - The sufficient condition of sign conversion for matrices over a finite field
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 51
EP  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a8/
LA  - ru
ID  - VMUMM_2015_1_a8
ER  - 
%0 Journal Article
%A M. V. Budrevich
%T The sufficient condition of sign conversion for matrices over a finite field
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 51-54
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a8/
%G ru
%F VMUMM_2015_1_a8
M. V. Budrevich. The sufficient condition of sign conversion for matrices over a finite field. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 51-54. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a8/

[1] Polya G., “Aufgabe 424”, Arch. Math. Phys., 20:3 (1913), 271

[2] Gibson P.M., “Conversion of the permanent into the determinant”, Proc. Amer. Math. Soc., 27 (1971), 471–476 | DOI | MR | Zbl

[3] Dolinar G., Guterman A., Kuzma B., Orel M., “On the P'olya permanent problem over finite fields”, Europ. J. Combinatorics, 32 (2011), 116–132 | DOI | MR | Zbl

[4] Budrevich M.V., Guterman A.E., “Permanent has less zeros than determinant over finite fields”, Contemp. Math. Amer. Math. Soc., 579 (2012), 33–42 | DOI | MR | Zbl

[5] Budrevich M.V., Guterman A.E., “On the Gibson bounds over finite fields”, Serd. Math., 38 (2012), 395–416 | MR | Zbl

[6] Mink Kh., Permanenty, Mir, M., 1982 | MR