Effective material functions of laminated composites in the linear moment theory of elasticity
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 40-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A special boundary value problem whose solution is used to find the homogenized material functions in the linear moment theory of elasticity is considered. A procedure for finding the homogenized material functions is discussed using an example of a composite laminate whose layers are isotropic.
			
            
            
            
          
        
      @article{VMUMM_2015_1_a6,
     author = {A. N. Emel'yanov},
     title = {Effective material functions of laminated composites in the linear moment theory of elasticity},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--45},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a6/}
}
                      
                      
                    TY - JOUR AU - A. N. Emel'yanov TI - Effective material functions of laminated composites in the linear moment theory of elasticity JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 40 EP - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a6/ LA - ru ID - VMUMM_2015_1_a6 ER -
%0 Journal Article %A A. N. Emel'yanov %T Effective material functions of laminated composites in the linear moment theory of elasticity %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2015 %P 40-45 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a6/ %G ru %F VMUMM_2015_1_a6
A. N. Emel'yanov. Effective material functions of laminated composites in the linear moment theory of elasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 40-45. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a6/
