Self-induced vibrations in a string-bow system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The oscillations of a thin stretched string is studied in the case when a bow slides on it with a constant velocity orthogonal to the string. The interaction between the bow and the string is governed by a smooth nonlinear law of friction with a falling segment of the characteristic. The motion of this mechanical system is described by an infinite coupled system of nonlinear ordinary differential equations. Some averaged equations of motion are derived in terms of the action–angle variables. The stationary points corresponding to self-oscillation regimes are found. The stability of these regimes is analyzed.
@article{VMUMM_2015_1_a5,
     author = {V. G. Vil'ke and I. L. Shapovalov},
     title = {Self-induced vibrations in a string-bow system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {34--40},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a5/}
}
TY  - JOUR
AU  - V. G. Vil'ke
AU  - I. L. Shapovalov
TI  - Self-induced vibrations in a string-bow system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 34
EP  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a5/
LA  - ru
ID  - VMUMM_2015_1_a5
ER  - 
%0 Journal Article
%A V. G. Vil'ke
%A I. L. Shapovalov
%T Self-induced vibrations in a string-bow system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 34-40
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a5/
%G ru
%F VMUMM_2015_1_a5
V. G. Vil'ke; I. L. Shapovalov. Self-induced vibrations in a string-bow system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 34-40. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a5/

[1] Strett Dzh.V. (lord Relei), Teoriya zvuka, v. 1, 2, 2-e izd., GITTL, M., 1955

[2] Andronov A.A., Vitt A.A., Khaikin S.E., Teoriya kolebanii, Fizmatgiz, M., 1959 | MR

[3] Landa P.S., Avtokolebaniya v raspredelennykh sistemakh, 2-e izd., Librokom, M., 2010 | MR

[4] Khizgiyaev S.V., “Avtokolebaniya dvukhmassovogo ostsillyatora s sukhim treniem”, Prikl. matem. i mekhan., 2007, no. 6, 1004–1013 | MR

[5] Pascal M., “Dynamics and stability of a two degrees of freedom oscillator with an elastic stop”, J. Comput. and Nonlinear Dynamics, 1:1 (2006), 94–102 | DOI

[6] Vilke V.G., Shapovalov I.L., “Avtokolebaniya dvukh tel s nelineinym treniem”, Vestn. Mosk. un-ta. Matem. Mekhan., 2011, no. 4, 39–45 | Zbl

[7] Sumbatov A.S., Yunin E.K., Izbrannye zadachi mekhaniki sistem s sukhim treniem, Fizmatlit, M., 2013

[8] Vilke V.G., Teoreticheskaya mekhanika, 3-e izd., Lan, SPb., 2003

[9] Proskuryakov I.V., Sbornik zadach po lineinoi algebre, Fizmatlit, M., 1962 | MR