Equiconvergence of expansions into triple trigonometric series and Fourier integral for continuous functions with a certain modulus of continuity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 25-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of equiconvergence on $\mathbb T^3=[-\pi, \pi)^3$ for expansions in a triple trigonometric Fourier series and a Fourier integral of continuous functions with a certain modulus of continuity in the case of a “lacunary sequence of partial sums”.
@article{VMUMM_2015_1_a4,
     author = {D. A. Grafov},
     title = {Equiconvergence of expansions into triple trigonometric series and {Fourier} integral for continuous functions with a certain modulus of continuity},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--33},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a4/}
}
TY  - JOUR
AU  - D. A. Grafov
TI  - Equiconvergence of expansions into triple trigonometric series and Fourier integral for continuous functions with a certain modulus of continuity
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 25
EP  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a4/
LA  - ru
ID  - VMUMM_2015_1_a4
ER  - 
%0 Journal Article
%A D. A. Grafov
%T Equiconvergence of expansions into triple trigonometric series and Fourier integral for continuous functions with a certain modulus of continuity
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 25-33
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a4/
%G ru
%F VMUMM_2015_1_a4
D. A. Grafov. Equiconvergence of expansions into triple trigonometric series and Fourier integral for continuous functions with a certain modulus of continuity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 25-33. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a4/

[1] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR

[2] Bloshanskii I.L., “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR

[3] Bloshanskii I.L., O skhodimosti i lokalizatsii kratnykh ryadov i integralov Fure, Kand. dis., M., 1978

[4] Oskolkov K.I., “Otsenka skorosti priblizheniya nepreryvnoi funktsii i ee sopryazhennoi summami Fure na mnozhestve polnoi mery”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1373–1407

[5] Bakhbukh M., Nikishin E.M., “O skhodimosti dvoinykh ryadov Fure ot nepreryvnykh funktsii”, Sib. matem. zhurn., 14:1 (1973), 1189–1199 | Zbl

[6] Bloshanskii I.L., Grafov D.A., “Ravnoskhodimost razlozhenii v kratnyi trigonometricheskii ryad i integral Fure v sluchae “lakunarnoi posledovatelnosti chastichnykh summ””, Dokl. RAN, 450:3 (2013), 260–263 | DOI | Zbl

[7] Hunt R., “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues, SIU Press, Carbondale, Illinois, 1968, 235–255 | MR

[8] Sjölin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9:1 (1971), 65–90 | DOI | MR | Zbl

[9] Bloshanskii I.L., Matseevich T.A., “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure nepreryvnykh funktsii s nekotorym modulem nepreryvnosti”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. statei, AFTs, M., 1999, 37–56 | MR