Directional derivative of the weight of a minimal filling in Riemannian manifolds
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 15-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the weight of the minimal filling, the Steiner–Gromov ratio, and the Steiner subratio regarded as functions of finite subsets of a complete connected Riemannian manifold have directional derivatives in all directions.
			
            
            
            
          
        
      @article{VMUMM_2015_1_a2,
     author = {E. I. Stepanova},
     title = {Directional derivative of the weight of a minimal filling in {Riemannian} manifolds},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/}
}
                      
                      
                    TY - JOUR AU - E. I. Stepanova TI - Directional derivative of the weight of a minimal filling in Riemannian manifolds JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 15 EP - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/ LA - ru ID - VMUMM_2015_1_a2 ER -
E. I. Stepanova. Directional derivative of the weight of a minimal filling in Riemannian manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 15-20. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/
