Directional derivative of the weight of a minimal filling in Riemannian manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 15-20

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the weight of the minimal filling, the Steiner–Gromov ratio, and the Steiner subratio regarded as functions of finite subsets of a complete connected Riemannian manifold have directional derivatives in all directions.
@article{VMUMM_2015_1_a2,
     author = {E. I. Stepanova},
     title = {Directional derivative of the weight of a minimal filling in {Riemannian} manifolds},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/}
}
TY  - JOUR
AU  - E. I. Stepanova
TI  - Directional derivative of the weight of a minimal filling in Riemannian manifolds
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 15
EP  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/
LA  - ru
ID  - VMUMM_2015_1_a2
ER  - 
%0 Journal Article
%A E. I. Stepanova
%T Directional derivative of the weight of a minimal filling in Riemannian manifolds
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 15-20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/
%G ru
%F VMUMM_2015_1_a2
E. I. Stepanova. Directional derivative of the weight of a minimal filling in Riemannian manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 15-20. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a2/