Bertrand surfaces with a pseudo-Riemannian metric of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 66-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the classic Bertrand theorem to surfaces of revolution with an indefinite metric without equators is presented. Their embeddings into the Minkowski space $\mathbb{R}^3_2$ are constructed and an analogue of Santoprete's criterion is formulated.
@article{VMUMM_2015_1_a13,
     author = {O. A. Zagryadskii},
     title = {Bertrand surfaces with a {pseudo-Riemannian} metric of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--69},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/}
}
TY  - JOUR
AU  - O. A. Zagryadskii
TI  - Bertrand surfaces with a pseudo-Riemannian metric of revolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 66
EP  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/
LA  - ru
ID  - VMUMM_2015_1_a13
ER  - 
%0 Journal Article
%A O. A. Zagryadskii
%T Bertrand surfaces with a pseudo-Riemannian metric of revolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 66-69
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/
%G ru
%F VMUMM_2015_1_a13
O. A. Zagryadskii. Bertrand surfaces with a pseudo-Riemannian metric of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 66-69. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/

[1] Bertrand J., “Théorème relatif au mouvement d'un point attiré vers un centre fixe”, C.r. Acad. sci. Paris, 77 (1873), 849–853 | Zbl

[2] Darboux G., “Étude d'une question relative au mouvement d'un point sur une surface de révolution”, Bull. S.M.F., 5 (1877), 100–113 | MR | Zbl

[3] Liebmann H., “Über die Zentralbewegung in der nichteuklidische Geometrie”, Berichte der Königl. Sächsischen Gesellschaft der Wissenschaft, Math. Phys. Kl., 55 (1903), 146–153 | Zbl

[4] Santoprete M., “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008) | DOI | MR | Zbl

[5] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl

[6] Bolsinov A.V., Fomenko A.T., Integriruemye gamiltonovy sistemy, Udmurtskii universitet, Izhevsk, 1999 | MR

[7] Fomenko A.T., “The integrability of some Hamiltonian systems”, Ann. Global Anal. and Geom., 1:2 (1983), 1–10 | DOI | MR | Zbl