Bertrand surfaces with a pseudo-Riemannian metric of revolution
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 66-69

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the classic Bertrand theorem to surfaces of revolution with an indefinite metric without equators is presented. Their embeddings into the Minkowski space $\mathbb{R}^3_2$ are constructed and an analogue of Santoprete's criterion is formulated.
@article{VMUMM_2015_1_a13,
     author = {O. A. Zagryadskii},
     title = {Bertrand surfaces with a {pseudo-Riemannian} metric of revolution},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--69},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/}
}
TY  - JOUR
AU  - O. A. Zagryadskii
TI  - Bertrand surfaces with a pseudo-Riemannian metric of revolution
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 66
EP  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/
LA  - ru
ID  - VMUMM_2015_1_a13
ER  - 
%0 Journal Article
%A O. A. Zagryadskii
%T Bertrand surfaces with a pseudo-Riemannian metric of revolution
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 66-69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/
%G ru
%F VMUMM_2015_1_a13
O. A. Zagryadskii. Bertrand surfaces with a pseudo-Riemannian metric of revolution. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 66-69. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a13/