Description of all minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 65-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The description of all minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic is given.
@article{VMUMM_2015_1_a12,
     author = {A. V. Makarov},
     title = {Description of all minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {65--66},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a12/}
}
TY  - JOUR
AU  - A. V. Makarov
TI  - Description of all minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 65
EP  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a12/
LA  - ru
ID  - VMUMM_2015_1_a12
ER  - 
%0 Journal Article
%A A. V. Makarov
%T Description of all minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 65-66
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a12/
%G ru
%F VMUMM_2015_1_a12
A. V. Makarov. Description of all minimal classes in the partially ordered set $\mathcal{L}^3_2$ of closed classes of the three-valued logic that can be homomorphically mapped onto the two-valued logic. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 65-66. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a12/

[1] Makarov A.V., “O gomomorfizmakh funktsionalnykh sistem mnogoznachnykh logik”, Matematicheskie voprosy kibernetiki, 4, Nauka, M., 1992, 5–29

[2] Maltsev A.I., “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika, 5:2 (1966), 5–24 | MR | Zbl

[3] Gnidenko V.M., “Nakhozhdenie poryadkov predpolnykh klassov v trekhznachnoi logike”, Problemy kibernetiki, 8, Nauka, M., 1962, 341–346 | MR