Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 62-65
Voir la notice de l'article provenant de la source Math-Net.Ru
Bifurcation diagrams for natural integrable Hamiltonian systems on Bertrand manifolds (i.e., on configuration spaces of one inverse problem of dynamics) are constructed. Some properties of the corresponding Liuoville foliations are studied, namely, the compactness and the number of foliation components in the preimage under momentum map.
@article{VMUMM_2015_1_a11,
author = {D. A. Fedoseev},
title = {Bifurcation diagrams of natural {Hamiltonian} systems on {Bertrand} manifolds},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {62--65},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/}
}
TY - JOUR AU - D. A. Fedoseev TI - Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2015 SP - 62 EP - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/ LA - ru ID - VMUMM_2015_1_a11 ER -
D. A. Fedoseev. Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/