Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 62-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bifurcation diagrams for natural integrable Hamiltonian systems on Bertrand manifolds (i.e., on configuration spaces of one inverse problem of dynamics) are constructed. Some properties of the corresponding Liuoville foliations are studied, namely, the compactness and the number of foliation components in the preimage under momentum map.
@article{VMUMM_2015_1_a11,
     author = {D. A. Fedoseev},
     title = {Bifurcation diagrams of natural {Hamiltonian} systems on {Bertrand} manifolds},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--65},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/}
}
TY  - JOUR
AU  - D. A. Fedoseev
TI  - Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 62
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/
LA  - ru
ID  - VMUMM_2015_1_a11
ER  - 
%0 Journal Article
%A D. A. Fedoseev
%T Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 62-65
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/
%G ru
%F VMUMM_2015_1_a11
D. A. Fedoseev. Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a11/

[1] Zagryadskii O.A., Kudryavtseva E.A., Fedoseev D.A., “Obobschenie teoremy Bertrana na poverkhnosti vrascheniya”, Matem. sb., 203:8 (2012), 39–78 | DOI | MR | Zbl

[2] Fomenko A.T., “The integrability of some Hamiltonian systems”, Ann. Global Anal. and Geom., 1:2 (1983), 1–10 | DOI | MR | Zbl

[3] Trofimov V.V., Fomenko A.T., “Liouville integrability of Hamiltonian systems on Lie algebras”, Russ. Math. Surveys, 39:2 (1984), 1–67 | DOI | MR | Zbl

[4] Fomenko A.T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR Izvestija, 29:3 (1987), 629–658 | DOI | Zbl

[5] Bertrand J., “Théorème relatif au mouvement d'un point attire vers un centre fixe”, C. r. Acad. sci. Paris, 77 (1873), 849–853 | Zbl

[6] Darboux G., “Sur un probléme de mécanique”: Despeyrous T., Cours de mécanique, Note XIV, v. 2, A. Herman, P., 1886, 461–466