Arithmetic properties of Euler series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 59-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a lower bound valid for infinitely many primes $p$ of the $p$-adic valuation of the number $E_p = \sum_{n=1}^\infty n!\in\mathbb{Q}_p$ which is an Euler-type series.
@article{VMUMM_2015_1_a10,
     author = {V. G. Chirskii},
     title = {Arithmetic properties of {Euler} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--61},
     year = {2015},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a10/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - Arithmetic properties of Euler series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2015
SP  - 59
EP  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a10/
LA  - ru
ID  - VMUMM_2015_1_a10
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T Arithmetic properties of Euler series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2015
%P 59-61
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a10/
%G ru
%F VMUMM_2015_1_a10
V. G. Chirskii. Arithmetic properties of Euler series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 59-61. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a10/

[1] Chirskii V.G., “O globalnykh sootnosheniyakh”, Matem. zametki, 48:2 (1990), 123–127 | Zbl

[2] Bertrand D., Chirskii V., Yebbon J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | DOI | MR | Zbl

[3] Nesterenko Yu.V., “Priblizheniya Ermita–Pade obobschennykh gipergeometricheskikh funktsii”, Matem. sb., 185:10 (1994), 39–72 | Zbl