Arithmetic properties of Euler series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 59-61
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper presents a lower bound valid for infinitely many primes $p$ of the $p$-adic valuation of the number $E_p = \sum_{n=1}^\infty n!\in\mathbb{Q}_p$ which is an Euler-type series.
@article{VMUMM_2015_1_a10,
author = {V. G. Chirskii},
title = {Arithmetic properties of {Euler} series},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {59--61},
year = {2015},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a10/}
}
V. G. Chirskii. Arithmetic properties of Euler series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2015), pp. 59-61. http://geodesic.mathdoc.fr/item/VMUMM_2015_1_a10/
[1] Chirskii V.G., “O globalnykh sootnosheniyakh”, Matem. zametki, 48:2 (1990), 123–127 | Zbl
[2] Bertrand D., Chirskii V., Yebbon J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | DOI | MR | Zbl
[3] Nesterenko Yu.V., “Priblizheniya Ermita–Pade obobschennykh gipergeometricheskikh funktsii”, Matem. sb., 185:10 (1994), 39–72 | Zbl